摘要
针对传统的PID算法和Smith预估器控制温度对象时,存在控制精度低、自适应能力差、对模型误差极为敏感、严重影响控制品质等问题。利用泰勒逼近,将内模控制与PID算法相结合,在减少调节参数的同时,有效降低模型失配对系统的影响,并引入变论域模糊控制,不仅能实现参数在线自整定,还能提高系统自适应能力和控制精度。Matlab仿真表明,当模型出现误差时,与传统算法相比,文中提出的算法超调量最低、稳定性最好、综合性能指标最高。
When the traditional PID algorithm and Smith predictor control the temperature object,there are problems such as low control accuracy,poor adaptive ability,and extreme sensitivity to model errors,which seriously affect the control quality.By using the Taylor approximation method,the internal model control is combined with the PID algorithm,which not only reducing the adjustment parameters but also effectively reduces the influence of the model mismatching system.The variable universe fuzzy control is introduced,which can not only realize the parameter online self-tuning but also improve the adaptability and control accuracy of the system.Matlab simulation shows that when the model has errors,compared with the traditional algorithm,the algorithm in this paper has the lowest overshoot,the best stability,and the highest comprehensive performance index.
作者
张皓
高瑜翔
曹远杰
马腾
黄天赐
ZHANG Hao;GAO Yuxiang;CAO Yuanjie;MA Teng;HUANG Tianci(College of Communication Engineering,Chengdu University of Information Technology,Chengdu 610225,China;Meteorological Information and Signal Processing Key Laboratory of Sichuan Education Institutes,Chengdu 610225,China)
出处
《成都信息工程大学学报》
2021年第6期602-609,共8页
Journal of Chengdu University of Information Technology
基金
四川省教育厅高校创新团队资助项目(15TD0022)。
关键词
变论域模糊内模
泰勒逼近
内模控制
温度对象
variable universe fuzzy internal model
Taylor approximation
internal model control
temperature object