期刊文献+

基于深度残差神经网络的博彩网页识别算法设计 被引量:2

Gambling web page recognition algorithm design based on deep residual neural network
下载PDF
导出
摘要 互联网对人民群众的生活和工作产生了重要影响,然而网络空间中隐藏着大量有害的博彩网站或赌博网站,很容易给网民造成损失和困扰,甚至可能扰乱社会秩序,因而研究对此类网站进行高效识别的方法具有重要意义。提出利用深度残差神经网络解决博彩类网页识别问题,基于深度残差网络的原理设计了算法GamblingRec。经验证,算法准确率达到了95.16%,正样本召回率为93.21%,表明基于深度残差神经网络的方法能够用于博彩类网页识别,并能达到较高的识别性能。 The Internet has an important impact on people′s life and work.However,there are a large number of harmful gambling websites hidden in cyberspace,which is easy to cause losses and troubles to netizens,it can even disturb society order.Therefore,it is of great significance to study the efficient recognition method of such websites.In this paper,the deep residual neural network is used to solve the problem of gambling web page recognition,and the algorithm GamblingRec is designed based on principle of deep residual network.The results show that the accuracy of GamblingRec reaches 95.16%,and the positive sample recall rate is 93.21%,which indicates that the method based on deep residual neural network can be applied for gambling web page recognition,and can achieve high recognition performance.
作者 张聪 张恒 张立坤 赵彤 邓桂英 Zhang Cong;Zhang Heng;Zhang Likun;Zhao Tong;Deng Guiying(Technological Research and Development Department,China Internet Network Information Center(CNNIC),Beijing 100190,China)
出处 《电子技术应用》 2022年第2期15-18,共4页 Application of Electronic Technique
关键词 卷积神经网络 残差网络 博彩 网页分类 ResNet convolutional neural network residual network gambling web page classification ResNet
  • 相关文献

参考文献4

二级参考文献28

共引文献117

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部