期刊文献+

未知时变扰动及模型参数动态不确定下船舶自动靠泊控制 被引量:2

Automatic berthing control of ships with unknown time-varying disturbance and dynamic uncertainty of model parameters
下载PDF
导出
摘要 针对未知时变扰动及模型参数动态不确定下的船舶自动靠泊控制问题,提出一种新的间接神经自适应的靠泊控制策略。采用径向基函数神经网络逼近船舶模型参数中动态不确定部分,采用带有唯一虚拟参数的线性化参数形式表示模型参数动态不确定性和未知时变扰动构成的复合不确定项,使计算简单,易于工程实现。利用Lyapunov理论证明提出的自动靠泊闭环控制系统的稳定性和信号的一致有界性。仿真实验结果证明了该控制律可以使船舶达到期望的位置和艏向角,实现船舶自动靠泊。 Aiming at the ship automatic berthing control problem under the unknown time-varying disturbance and the dynamic uncertainty of model parameters,a new indirect neural adaptive berthing control strategy is proposed.The radial basis function neural network is used to approximate the dynamic uncertain part of the ship model parameters,and the linearized parameter form with a unique virtual parameter is used to express the compound uncertainty from the dynamic uncertainty of model parameters and the unknown time-varying disturbance,making the calculation simple and the project realization easy.The stability of the proposed automatic berthing closed-loop control system and the consistent boundedness of the signal are proved by Lyapunov theory.Simulation experiment results prove that the control law can control a ship to the desired position and heading angle,and realize ship automatic berthing.
作者 赵永生 吴韬 白一鸣 ZHAO Yongsheng;WU Tao;BAI Yiming(College of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,Liaoning,China)
出处 《上海海事大学学报》 北大核心 2022年第1期8-13,共6页 Journal of Shanghai Maritime University
基金 大连市软科学研究计划(2019J11CY014)。
关键词 自动靠泊 动态不确定 未知时变扰动 神经网络 虚拟参数 automatic berthing dynamic uncertainty unknown time-varying disturbance neural network virtual parameter
  • 相关文献

参考文献2

二级参考文献58

  • 1杨盐生.船舶靠离泊操纵数学模型的研究[J].大连海事大学学报,1996,22(4):11-15. 被引量:24
  • 2卜仁祥,刘正江,胡江强.欠驱动船舶非线性滑模靠泊控制器[J].交通运输工程学报,2007,7(4):24-29. 被引量:15
  • 3.张宏军.船舶工业4.0以智能化创造新价值[N].中国船舶报,2014-10-22.
  • 4AHMED Y A, HASEGAWA K. Implementation of auto- matic ship berthing using artificial neural network for free running experiment [ C ]//The 9th International Federa- tion of Automatic Control (IFAC) Conference on Control Applications in Marine Systems (CAMS). Oxford, UK : IFAC-Elsevier Ltd, 2013 : 25 - 30.
  • 5ZHANG Yao, GRANT E H, PRATYUSH S. A muhivari- able neural controller for automatic ship berthing control systems [ J ]. IEEE Control Systems, 1997,17 ( 4 ) : 31 - 44.
  • 6AHMED Y A, HASEGAWA K. Automatic ship berthing using artificial neural network trained by consistent teach- ing data using nonlinear programming method [ J ]. Engi- neering Applications of Artificial Intelligence, 2013,26 (10) :2287 -2304.
  • 7AHMED Y A, HASEGAWA K. Automatic ship berthing using artificial neural network based on virtual window concept in wind condition [ C]//13th IFAC Symposium on Control in Transportation Systems. Oxford, UK. IF- AC-Elsevier Ltd,2012 : 12 - 14.
  • 8PARK J Y, NAKWAN K. Design of an adaptive back- stepping controller for auto-berthing a cruise ship under wind loads [ J ]. International Journal of Naval Architec- ture and Ocean Engineering,2014,6 (2) :347 -360.
  • 9LIU Yang, GUO Chen. Automatic berthing control of underactuated surface ships in restricted waters based on nonlinear adaptive control method [ C ]//Proceedings of the 31 st Chinese Control Conference. Piscataway, NJ : IEEE Press,2012:939 - 944.
  • 10MIZUNO N, TAMAI Y, OKAZAKI T, et al. A ship' s minimum-time maneuvering system using neural net- works [ C ]//IECON 02 ( Industrial Electronics Society, IEEE 2002 28th Annual Conference). Piscataway, NJ: IEEE Press,2002 : 1848 - 1853.

共引文献22

同被引文献41

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部