摘要
毫米波通信链路具有低延迟、高速率和高定向性的特点,能够实现高速率自组网通信和高精度节点定位。在通信定位一体化背景下,研究了毫米波自组网中的多用户资源分配问题。系统采用基于正交频分多址(OFDMA)的多用户通信定位一体化框架,推导了基于位置估计误差界(PEB)和方位估计误差界(OEB)的多用户定位性能准则和基于数据速率的通信准则,建立了时域和频域的资源分配优化问题模型,在保障链路通信速率的前提下,最优化用户的定位性能指标。为了求解上述混合整数非线性规划问题,引入广义Benders分解算法,将优化问题分解为主问题和子问题进行迭代求解,得到有效的资源分配结果,最后通过仿真验证了资源分配对定位与通信性能的影响以及算法的有效性。
Millimeter wave(mmWave)communication has the characteristics of low latency,high speed and high directivity,which can realize high-speed communication and high-precision localization in the mesh network.In this paper,the multi-user resource allocation problem in the mmWave mesh network is studied under the integrated communication and position system.Based on the Orthogonal Frequency Division Multiple Access(OFDMA)multi-user communication and positioning integrated framework,we derive the multi-user positioning performance criterion using Position Estimation Error Bounds(PEB)and Orientation Estimation Error Bounds(OEB)and the communication criterion using data rate.Then,the resource allocation optimization problem is designed to optimize the user positioning performance on the premise of ensuring the link rate.In order to solve the above mixed-integer nonlinear programming problem,the Generalized Benders Decomposition(GBD)algorithm is introduced to decompose the optimization problem into the master problem and the sub-problem and an iterative method is proposed to obtain the effective resource allocation results.Finally,the simulation results verify the impact of resource allocation on positioning and communication performance,as well as the effectiveness.
作者
卢小峰
李越杰
陈若虚
殷本全
LU Xiao-feng;LI Yue-jie;CHEN Ruo-xu;YIN Ben-quan(School of Telecommunications Engineering, Xidian University, Xi'an 710071, China)
出处
《导航定位与授时》
CSCD
2022年第2期32-40,共9页
Navigation Positioning and Timing
基金
国家自然科学基金(U1705263)
河北省省级科技计划(20310901D)
陕西省重点研发计划项目(2018ZDCXL-GY-04-06)。
关键词
毫米波
通信定位一体化
资源分配
自组网
正交频分多址
广义Benders分解算法
Millimeter wave
Integration of communication and positioning
Resource allocation
Mesh network
OFDMA
Generalized Benders Decomposition(GBD)algorithm