期刊文献+

非负矩阵分解与非负张量分解:算法与应用

The algorithm and application of nonnegative matrix factorization and nonnegative tensor factorization
下载PDF
导出
摘要 非负张量分解将一个非负张量表为秩1非负张量之和,而非负矩阵分解是非负张量分解在二维下的特殊情形。首先,介绍非负矩阵分解的乘性迭代算法和交替最小二乘算法,并通过数值实验比较两种算法的优劣;其次,介绍非负张量分解在不同代价函数下的乘性迭代算法;最后,将非负矩阵分解和非负张量分解的乘性迭代算法用于人脸识别的特征提取,通过识别准确率比较它们之间的优劣。 The nonnegative tensor factorization(NTF)is to decompose a nonnegative tensor into the sum of some nonnegative tensors of rank one.The nonnegative matrix factorization(NMF)is a special case of NTF in 2D.In this paper,we first introduced the multiplicative iterative algorithm and the alternating least square algorithm of NMF,and compared the advantages and disadvantages of the two algorithms through numerical experiments.Secondly,the multiplicative iterative algorithm of NTF under different cost functions was introduced.Finally,the multiplicative iterative algorithms of NMF and NTF were applied to feature extraction of face recognition.Their advantages and disadvantages were compared by recognition accuracy.
作者 宋珊 冯岩 徐常青 SONG Shan;FENG Yan;XU Changqing(School of Mathematical Sciences,SUST,Suzhou 215009,China)
出处 《苏州科技大学学报(自然科学版)》 2022年第1期27-34,共8页 Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(11871362)。
关键词 非负矩阵分解 非负张量分解 乘性迭代 交替最小二乘 人脸识别 nonnegative matrix factorization nonnegative tensor factorization multiplicative iteration alternating least squares face recognition
  • 相关文献

参考文献4

二级参考文献63

  • 1LEE D, SEUNG H. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
  • 2HOYER P. Non-negative matrix factorization with sparseness constraints[J]. The Journal of Machine Learning Research, 2004, 5: 1457-1469.
  • 3LI S, HOU X, ZHANG H, et al. Learning spatially localized, parts-based representation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Kauai: IEEE, 2001.
  • 4PASCUAL-MONTANO A, CARAZO J, KOCHI K, et al. Nonsmooth nonnegative matrix factorization (Nsnmf)[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3): 403-415.
  • 5HEILER M, SCHN R R C. Learning sparse representations by non-negative matrix factorization and sequential cone programming[J]. The Journal of Machine Learning Research, 2006, (7): 1385-1407.
  • 6CAI D, HE X, WU X, et al. Non-negative matrix factorization on manifold[C]//Proceedings of International Conference on Data Mining. Pisa, Italy: IEEE, 2008.
  • 7CAI D, HE X, Wang X, et al. Locality preserving nonnegative matrix factorization[C]//Proceedings of the 21 st International Jont Conference on Artifical Intelligence. Pasadena, CA, USA: LJCAI, 2009.
  • 8BUCIU I, PITAS I. A new sparse image representation algorithm applied to facial expression recognition[C]// Proceedings of IEEE Workshop on Machine Learning for Signal Processing. Sao Luis: IEEE, 2004.
  • 9WANG Y, JIA Y, HU C, et al. Non-negative matrix factorization fi'amework for face recognition[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2005, 19f4): 495-512.
  • 10DONOHO D, STODDEN V. When does non-negative matrix factorization give a correct decomposition into parts[J]. Advances in Neural Information Processing Systems, 2004, 16: 1141-1148.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部