期刊文献+

基于地铁列车监控数据的牵引变流器滤网堵塞故障预警研究 被引量:4

Research on Fault Early Warning of Traction Converter Filter Fouling Based on Metro Train Monitoring Data
下载PDF
导出
摘要 针对地铁列车牵引变流器冷却系统的滤网脏堵问题,提出了一种基于机器学习的变流器滤网脏堵预警模型,以指导滤网的预测维修决策。首先,为确定强分类的特征参数,结合列车牵引系统的检修记录,利用随机森林分类模型对列车历史数据进行特征筛选;其次,基于选定特征构建了孤立森林异常检测模型,并对模型参数进行优化;最后,分别在历史健康数据、故障数据集上进行测试,以确定模型能够识别滤网脏堵的准确度。结果表明:所构建的孤立森林模型分数能够直接反映牵引变流器滤网的脏堵程度,可有效指导滤网脏堵的维修决策。 Aiming at the problem of filter dirt and fouling of train traction converter cooling system,a converter filter fouling early warning model is proposed to guide the predictive maintenance decision of the filter screen.First,in order to determine the characteristic parameters of strong classification,combined with the maintenance records of the train traction system,the random forest classification model is used to complete the feature screening of the train historical data.Second,the isolated forest anomaly detection model is constructed based on selected features,and the model parameters are optimized.Final-ly,tests are performed on historical health data and fault data sets to make sure that the model can accurately identify filter fouling.Results show that the scoring of the constructed isolated forest model can directly reflect the degree of traction converter filter fouling,effectively guiding the maintenance decision for filter fouling.
作者 梁师嵩 LIANG Shisong(CRRC Nanjing Puzhen Co.,Ltd.,210031,Nanjing,China)
出处 《城市轨道交通研究》 北大核心 2022年第3期76-80,共5页 Urban Mass Transit
关键词 地铁列车 牵引变流器 滤网脏堵 故障预警 机器学习 metro train traction converter filter fouling fault early warning machine learning
  • 相关文献

参考文献7

二级参考文献24

  • 1Davies S, Russl S. NP completeness of searches for smallest possible feature sets[C]//Proceedings of the AAAI Fall Symposiums on Relevance, Menlo Park, 1994:37-39.
  • 2Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
  • 3Strobl Carolin, Boulesteix Anne-Laure, Kneib Thomas, et al. Conditional variable importance for random forests[J]. BMC Bioinformatics, 2008, 9 (1) : 1-11.
  • 4Reif David M, Motsinger Alison A, McKinney Brett A, et al. Feature selection using a random forests classifier for the integrated analysis of multiple data types[C]//IEEE Symposium on Computational In- telligence and Bioinformatics and Computational Bi- ology, 2006: 171-178.
  • 5Mohammed Khalilia, Sounak Chakraborty, Mihail Popescu. Predicting disease risks from highly im- balanced data using random forese[J]. BMC Medi- cal Informaties and Decision Making, 2011, 11(7): 51-58.
  • 6Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests[J]. Pattern Recognition, 2011, 44 (2): 330-349.
  • 7Inza I, Larranaga P, Blanco R. Filter versus wrap- per gene selection approaches in DNA microarray domains [J]. Artificial Intelligence in Medicine, 2004, 31(2): 91-103.
  • 8李杰波.电动车组牵引电机装车后的温升试验方法研究[J].铁道机车车辆,2008,28(B12):114-117. 被引量:5
  • 9蒋盛益,郑琪,张倩生.基于聚类的特征选择方法[J].电子学报,2008,36(B12):157-160. 被引量:18
  • 10胡响响.空调过滤网除臭效果实验研究[J].洁净与空调技术,2009(3):10-11. 被引量:2

共引文献279

同被引文献42

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部