摘要
针对LSTM神经网络模型的计算量较大,不可控的自主选择过程以及容易过拟合等问题,提出了TCK-LSTM-ATT模型,利用卷积核对数据特征进行提取合并,采用注意力机制对重要数据进行加权的组合模型方法。为了验证该模型对于供水量预测的准确性,利用中国东北某市2019年到2020年的某供水管网系统供水数据进行验证。实验结果表明,与普通模型相比,组合模型的预测误差减少约20%,R^(2)值约为9.5,取得了较好的预测效果。
Aiming at the problems of large amount of calculation,uncontrollable independent selection process and easy over fitting of LSTM,a combined model method is proposed.The model uses convolution to extract features and merge features,uses attention mechanism to weight important data.The model is called TCK-LSTM-ATT model.In order to verify the accuracy of this model in water supply prediction,the water supply data of a urban water supply network system in Northeast China from 2019 to 2020 are used for verification.Compared with the ordinary model,the prediction error of this model is reduced by about 20%,and the R^(2) value is about 9.5.It is considered that a good prediction effect is achieved in the experiment.
作者
王梓涵
于忠清
WANG Zi-han;YU Zhong-qing(College of Computer Science and Technology Qingdao University, Qingdao 266071, China)
出处
《青岛大学学报(自然科学版)》
CAS
2022年第1期53-59,共7页
Journal of Qingdao University(Natural Science Edition)
基金
山东省重点研发计划(批准号:2019JZZY020101)资助。
关键词
供水量预测
长短时循环记忆网络
卷积核
注意力机制
water supply forecast
long short-term memory
convolution kernel
attention mechanism