期刊文献+

无线网络中智能超表面部署研究

Research of Reconfigurable Intelligent Surface Deployment for Wireless Communication Networks
下载PDF
导出
摘要 智能超表面(Reconfigurable Intelligent Surface,RIS)作为面向未来的改变传播环境的技术,在无线通信系统中起着重要的作用,可通过改变无线信道环境,来改变信号的传播特性,从而能够按需提供无线网络的覆盖和容量。相比传统无线通信的被动适应无线信道,转化为未来无线通信的自适应可重构无线信道。在智能超表面现有工作基础上,研究了智能超表面技术的波束设计、部署特征、部署性能等关键技术。针对上述方向,进一步剖析了其未来应用特性,并从覆盖效率等方面进行了定义。最后通过仿真来定量地分析面板部署的性能和方案,从而充分发挥其在未来无线网络中的覆盖和容量增强优势。 As a future technology to change the propagation environment,Reconfigurable Intelligent Surface(RIS)technology plays an important role in wireless communication system.It can change the propagation characteristics of signals by changing the wireless channel environment,so as to provide the coverage and capacity of wireless network on demand.Compared with traditional wireless communication,the passive adaptive wireless channel is transformed into an adaptive reconfigurable wireless channel for future wireless communication.Based on existing research work of RIS,key technologies such as beam design,deployment characteristics and deployment performance of RIS technology are studied.In view of the above directions,its future application characteristics are further analyzed,and its coverage efficiency is defined.Finally,the performance and scheme of panel deployment are quantitatively analyzed through simulations,so as to give full play to its advantages of coverage and capacity enhancement in future wireless networks.
作者 崔亦军 李萍 叶峥峥 武艺鸣 窦建武 CUI Yijun;LI Ping;YE Zhengzheng;WU Yiming;DOU Jianwu(ZTE Corporation,Shanghai 201203,China;State Key Laboratory of Mobile Network and Mobile Multimedia Technology,Shenzhen 518055,China)
出处 《无线电通信技术》 2022年第2期291-296,共6页 Radio Communications Technology
基金 国家重点研发计划(2020YFB1807600)。
关键词 智能超表面 无线通信网络 部署性能 覆盖效率 reconfigurable intelligent surface wireless communication network deployment performance coverage efficiency
  • 相关文献

参考文献7

二级参考文献85

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 3Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 4Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 53GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 6Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.
  • 7Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590-3600.
  • 8Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436-1449.
  • 9You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35-43.
  • 10You X H, Wang D M, Zhu P C, et al. Cell edge performance of cellular systems. IEEE J Sel Area Commun, 2011, 29: 1139-1150.

共引文献891

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部