期刊文献+

基于蚁群算法的无人机侦察任务分配 被引量:7

Assignment of UAV Reconnaissance Task Based on Ant Colony Algorithm
下载PDF
导出
摘要 随着无人机(Uninhabited Aerial Vehicle,UAV)平台自身性能和信息化水平的提升,如何对无人机进行侦察任务分配成为重点问题;并且任务分配问题涉及无人机和目标数量、位置、性能等众多因素,也使任务分配问题变得十分复杂。针对侦察任务分配问题,进行分配建模研究,细化约束条件,使其更贴合实际应用场景。利用蚁群算法对分配模型求解,综合考虑所涉及的无人机性能、目标特点、数量等多种因素,并获得合理的分配方案,对实际应用具有一定的意义。 With the improvement of UAV(Uninhabited Aerial Vehicle)platform performance and IT level,modern battlefield environment has become more and more complex.How to assign reconnaissance tasks to UAV has become a key issue.In addition,there are many factors involved in task allocation problem,including number,location,and performance of UAV and targets,which makes task allocation problem very complicated.Aiming at the problem of reconnaissance task assignment,assignment modeling is studied to refine the constraint conditions and make it more suitable for practical application scenarios.Using ant colony algorithm to solve the assignment model can comprehensively consider various factors involved and obtain a reasonable distribution scheme,which has certain significance for practical application.
作者 马培博 钟麟 MA Peibo;ZHONG Lin(The 54th Research Institute of CETC,Shijiazhuang 050081,China)
出处 《无线电通信技术》 2022年第2期371-375,共5页 Radio Communications Technology
关键词 无人机 任务分配 蚁群算法 uninhabited aerial vehicle allocation assignment ant colony algorithm
  • 相关文献

参考文献3

二级参考文献19

  • 1NEGNEVITSKY M.人工智能:智能系统指南[M].北京:机械工业出版社,2007.
  • 2BORTOFF S A.Path Planning for UAVS[C].Proceeding of the American Control Conference,2000:364-368.
  • 3YUAN X H,YUAN Y B,ZHANG Y C.A Hybrid Chaotic Genetic Algorithm for Short-Term Hydro System Scheduling[J].Mathematics and Computers in Simulation,2002,59(4):319-327.
  • 4Kalyanam K, Chandler P, Pachter M, et al. Optimization of perimeter patrol operations using unmanned aerial vehiclesEJ]. Journal of Guidance, Control,and Dynamics ,2012,35(2) :434 - 441.
  • 5Shaferman V, Shima T. Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments[J]. Journal of Guidance, Control, and Dynamics, 2008,31 ( 5 ) ~ 1360 - 1371.
  • 6Bethke B, Valenti M, How J P. UAV task assignment[J]. I EEE Robotics and Automation Magazine, 2008,15 (1) ~ 39 - 44.
  • 7MeLain T W, Beard R W. Coordination variables, coordination functions, and cooperative timing missions [J]. Journal of Guidance, Control, and Dynamics, 2005, 28 (1) : 150 - 161.
  • 8Sahingoz O K. Generation of Bezier curve-based flyable trajecto- ries for multi UAV systems with parallel genetic algorithm~JJ. Journal of ITztelli gent a~M Robotic Systems, 2014,74(1/2) : 499 - 511.
  • 9Koyuncu E, Ure N K, Inalhan G. Integration of path/maneu- ver planning in complex environments for agile maneuvering UCAVsEJ]. Journal of Intelligent ~ Robotic Systems, 2010, 57(1/4) :143- 170.
  • 10Bakker T, Klenke R H. Dynamic multi-task allocation for col- laborative unmanned aircraft systems[C]//Proc, of the 52nd Aerospace Sciences Meeting, 2014: I - 10.

共引文献42

同被引文献47

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部