期刊文献+

基于特征自动识别的心肌梗死关键因素挖掘研究 被引量:1

Study on the Mining of Key Factors of Myocardial Infarction Based on the Automatic Feature Recognition
下载PDF
导出
摘要 利用人工智能技术,基于患者既往就诊数据进行机器学习相关算法分析,建立心肌梗死疾病特征自动识别模型,通过特征挖掘找出关键和主要致病因素,为医生提供定性或定量辅助诊断意见。 Artificial Intelligence(AI)technology is used to analyze the Machine Learning(ML)algorithm based on the patients’previous medical data,and an automatic recognition model for disease features of myocardial infarction is built.The key and main pathogenic factors are found through feature mining to provide qualitative or quantitative auxiliary diagnosis advices for doctors.
作者 王颖晶 郑涛 陈珊黎 邵维君 韩刚 丁粉华 WANG Yingjing;ZHENG Tao;CHEN Shanli;SHAO Weijun;HAN Gang;DING Fenhua(Information Center,Renji Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200127,China)
出处 《医学信息学杂志》 CAS 2022年第1期54-58,共5页 Journal of Medical Informatics
基金 上海市信息化发展专项资金项目“面向仁济医院医联体的专病临床科研智能辅助决策平台建设”(项目编号:201901007)。
关键词 心肌梗死 机器学习 特征重要性 myocardial infarction Machine Learning(ML) feature importance
  • 相关文献

参考文献4

二级参考文献94

  • 1Labrinidis A, Jagadish H V. Challenges and Opportunities with Big Data. Proc of the VLDB Endowment, 2012, 5(12) : 2032-2033.
  • 2Bizer C, Boncz P, Brodie M L, et al. The Meaningful Use of Big Data : Four Perspectives-Four Challenges. ACM SIGMOD Record, 2012, 40(4) : 56-60.
  • 3Wang F Y. A Big-Data Perspective on AI: Newton, Merton, and An- alytics Intelligence. IEEE Intelligent Systems, 2012, 27 (5) : 2-4.
  • 4Simon H A. Why Should Machines Learn?//Michalski R S, Car- bonell J G, Mitchell T M, et al. , eds. Machine Learning: An Arti- ficial Intelligence Approach. Berlin, Germany: Springer, 1983: 25 -37.
  • 5Hart P. The Condensed Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1968, 14(3) : 515-516.
  • 6Gates G. The Reduced Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1972, 18(3) : 431-433.
  • 7Brighton H, Mellish C. Advances in Instance Selection for Instance- Based Learning Algorithms. Data Mining and Knowledge Discovery, 2002, 6(2) : 153-172.
  • 8Li Y H, Maguire L. Selecting Critical Patterns Based on Local Geo- metrical and Statistical Information. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(6) : 1189-1201.
  • 9Angiulli F. Fast Nearest Neighbor Condensation for Large Data Sets Classification. IEEE Trans on Knowledge and Data Engineering, 2007, 19(11): 1450-1464.
  • 10Angiulli F, Folino G. Distributed Nearest Neighbor-Based Conden- sation of Very Large Data Sets. IEEE Trans on Knowledge and Da- ta Engineering, 2007, 19(12): 1593-1606.

共引文献5626

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部