期刊文献+

基于卷积神经网络的竖排版繁体中文图像文本化研究 被引量:1

Textualization of Traditional Chinese Images Based on Convolutional Neural Network
下载PDF
导出
摘要 竖排版繁体中文图像文本化问题可以看作是古籍图像中文字的定位和识别问题,但目前主流的OCR技术对古籍文献中竖排版繁体中文的识别精度不高。为了解决此问题,本文将深度学习应用于文字识别和定位中。首先基于SSD模型,运用目标检测算法从古籍文献图像中定位文字;然后构建了Inception-Resnet卷积神经网络进行文字识别。测试表明,在同样数据集的条件下,针对不同版式、大小和字体的古籍文献图像,与其他经典神经网络模型相比,本文模型的性能和综合适用性更好。 The problem of textualization of vertical layout traditional Chinese images can be regarded as a problem of positioning and recognition of characters in images of ancient books,but the current mainstream OCR technology does not have high recognition accuracy forit. To solve this problem,this paper applied deep learning to text recognition and localization. Firstly,based on the SSD model,the target detection algorithm was used to locate the text from the ancient book document images;then the Inception-Resnet convolutional neural network was constructed for text recognition. The test showed that,under the same data set,the performance and comprehensive applicability of the model in this paper were better than other classical neural network models for ancient book images of different layouts,sizes and fonts.
作者 李华 魏志浩 刘俊 李万清 张林达 袁友伟 何宏 LI Hua;WEI Zhihao;LIU Jun;LI Wanqing;ZHANG Linda;YUAN Youwei;HE Hong(Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《智能物联技术》 2021年第5期24-30,共7页 Technology of Io T& AI
基金 浙江省基础公益研究计划项目资助(No.LGG18F020014) 浙江省高等教育学会研究课题(项目编号KT2020393)。
关键词 卷积神经网络 文字识别 文字定位 图像处理 convolutional neural network character recognition text localization image processing
  • 相关文献

参考文献1

二级参考文献15

  • 1Dai Ruwei,Liu Chenglin,Xiao Baihua.Chinese Character Recognition:History,Status and Prospects[J].Frontiers of Computer Science in China,2007,1(2):126-136.
  • 2Shin J,Sakoe H.Optimal Stroke-correspondence Search Method for On-line Character Recognition[J].Pattern Recognition Letters,2002,23(6):601-608.
  • 3Lee Seong-whan,Kim Chang-hun,Ma Hong,et al.Multiresolution Recognition of Unconstrained Handwritten Numerals with Wavelet Transform and Multilayer Cluster Neural Network[J].Pattern Recognition,1996,29(12):1953-1961.
  • 4Hu Jiangying,Lim Sok-gek,Michael K.Writer Independent On-line Handwriting Recognition Using an HMM Approach[J].Pattern Recognition,2000,33(1):133-147.
  • 5Su Tonghua,Zhang Tianwen,Qiu Zhaowen,et al.Hmm-based System for Transcribing Chinese Hand Writing[C] //Proc.of the 6th International Conference on Machine Learning and Cybernetics.Hong Kong,China:[s.n.] ,2007.
  • 6Li Yanfang,Yang Huamin,Xu Jing.Chinese Character Recognition Method Based on Multi-features and Parallel Neural Network Computation[C] //Proc.of the 3rd InternationalConference on Advanced Intelligent Computing Theories and Applications.Qingdao,China:[s.n.] ,2007.
  • 7Fu Chang.Techniques for Solving the Large-scale Classification Problem in Chinese Handwriting Recognition[C] //Proc.of the 2006 Conference on Arabic and Chinese Handwriting Recognition.College Park,USA:Springer-Verlag,2008.
  • 8Bahlmann C,Haasdonk B,Burkhardt H,et al.On-line Handwriting Recognition with Support Vector Machines--A Kernel ApproachC] //Proc.of the 8th International Workshop on Frontiers in Handwriting Recognition.[S.l.] :IEEE Computer Society,2002.
  • 9Qiang Fu,Li Tongzhi,Liu Changsong.An Effective and Practical Classifier Fusion Strategy for Improving Hand Written Character Recognition[C] //Proc.of the 9th International Conference on Document Analysis and Recognition.Curitiba,Parana,Brazil:IEEE Computer Society,2007.
  • 10何志国,曹玉东.脱机手写体汉字识别综述[J].计算机工程,2008,34(15):201-204. 被引量:9

共引文献27

同被引文献26

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部