期刊文献+

基于道路网络的LED路灯聚类组网算法的研究 被引量:2

Research on Street Lamp Clustering Networking Algorithms Based on Road Network
下载PDF
导出
摘要 LED路灯控制系统通常使用ZigBee通讯网络作为节点间的通讯方式,在其系统组网的过程中,底层Mesh网络分簇主要依靠人工进行,效率较低。论文提出了基于道路网络的路灯聚类组网算法SLCNARN(Street Lamp Clustering Networking Algorithms Based on Road Network)。通过对路灯数据进行聚类分析,增加了聚类算法对基于环境的网络距离定义、路灯集中控制器容量以及对路灯基于道路分布特点的考虑,实验结果表明,该聚类方法能够有效计算出路灯集中控制器的摆放位置,提高照明控制效果,降低组网难度。 The ZigBee communication network is usually used as the communication mode between nodes in the LED street lamp control system.In the process of networking,the clustering of the underlying Mesh network mainly depends on manual work,and the efficiency is low.This paper presents a street lamp clustering algorithm SLCNARN(Street Lamp Clustering Network Working Algorithms Based on Road Network)based on road network.Through clustering analysis of street lamp data,the definition of network distance based on environment,the capacity of street lamp centralized controller and the characteristics of street lamp based on road distribution are considered by clustering algorithm.The experimental results show that this clustering method can effectively calculate the placement position of street lamp centralized controller,improve the lighting control effect and reduce the difficulty of networking.
作者 孙同陈 李峰 SUN Tongchen;LI Feng(School of Computer and Communication Engineering,Jiangsu University,Zhenjiang 212013)
出处 《计算机与数字工程》 2022年第3期486-491,543,共7页 Computer & Digital Engineering
关键词 LED路灯 SLCNARN聚类算法 ZIGBEE网络 照明系统 LED street lamp SLCNARN clustering algorithm ZigBee network lighting system
  • 相关文献

参考文献6

二级参考文献56

  • 1刘琳岚,樊佑磊,舒坚,臧超.一种基于BP神经网络的WSNs链路质量预测方法[J].计算机研究与发展,2011,48(S2):212-215. 被引量:6
  • 2石陆魁,何丕廉.一种基于密度的高效聚类算法[J].计算机应用,2005,25(8):1824-1826. 被引量:21
  • 3陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2):332-344. 被引量:29
  • 4罗玎玎,赵海,尹震宇,孙佩刚,毕远国.WSNs中基于PMP的多SINK节点布局研究与实现[J].小型微型计算机系统,2007,28(6):979-982. 被引量:3
  • 5Luo J, Hubaux J P. Joint mobility and routing for lifetime elongation in wireless sensor networks[C]//Proc, of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies,2005: 1735-1746.
  • 6Efrat A, Har-Peled S, Mitchell J S B. Approximation algorithms for two optimal location problems in sensor networks[C]//Proc, of the 2nd International Conference on Broadband Networks, 2005: 714 -723.
  • 7Dai S, Tang C, Qiao S, et al. Optimal multiple sink nodes deploy ment in wireless sensor networks based on gene expression program ming[ C] // Proc. of the 2nd International Conference on Communi cation Software and Networks, 2010 : 355 - 359.
  • 8Bogdanov A, Maneva E, Riesenfeld S. Power-aware base station positioning for sensor networks[C]//Proc, of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies, 2004.
  • 9Pan J, Cai L, Hou Y T, et al. Optimal base-station locations in two-tiered wireless sensor networks[J]. IEEE Trans. on Mo- bile Computing, 2005, 4(5) : 458 - 473.
  • 10Vincze Z, Vida R, Vidaes A. Deploying multiple sinks in multi- hop wireless sensor networks[C]//Proc, of the IEEE Interna tional Conference on Pervasive Services, 2007 :55 - 63.

共引文献52

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部