期刊文献+

基于深度置信网络的心电信号分类识别 被引量:2

Classification and Recognition of ECG Signals Based on Deep Belief Network
下载PDF
导出
摘要 传统的心电信号分类方法通常需要人为提取特征,导致系统的分类性能不稳定。基于此,运用了基于深度置信网络的心电信号分类算法,利用网络的深层次学习能力自动学习信号的特征。提取特征后,选用Softmax分类器对信号进行分类,并用误差反向传播算法微调网络,提高分类性能。选取MIT-BIH数据库中的正常心拍、室性早搏、房性早搏和起搏心拍进行实验,通过实验结果和方法对比,深度置信网络整体的分类精度达到98.8%,表明其在心电信号分类问题中具有良好的分类识别效果。 Traditional ECG classification methods usually need to extract features manually,which leads to the instability of classification performance.Based on this,a ECG signal classification algorithm based on the deep belief network is used.It uses the deep learning ability of the network to learn the characteristics of the signal automatically.After feature extraction,softmax classifier is used to classify the signals,and error back-propagation algorithm is used to fine tune the network to improve the classification performance.The normal beat,ventricular premature beat,atrial premature beat and pacing beat in MIT-BIH database are selected for classification and recognition.Through the experimental results and comparison of methods,the overall classification accuracy of the deep belief network is 98.8%.It shows that deep belief network has a good classification and recognition effect in ECG signal classification.
作者 刘健 徐伟 钱炜 LIU Jian;XU Wei;QIAN Wei(School of Electronic Information Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003)
出处 《计算机与数字工程》 2022年第3期559-564,共6页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:61601206) 江苏省自然科学基金项目(编号:BK20160565) 江苏省高校自然科学研究项目(编号:15KJB310003)资助。
关键词 心电信号 深度置信网络 特征提取 分类识别 ECG signal deep confidence network feature extraction classification and recognition
  • 相关文献

参考文献3

二级参考文献42

  • 1叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006.
  • 2Haykin S. Neural Networks and Learning Machines (3rd Edition) [M]. New Jersey: Pearson Education, 2009.
  • 3Hinton G E, Sejnowski T J. Learning and relearning in Boltzmann machines[C]// Parallel Distributed Processing: Explorations in the Microstructure of Cognition,Cambridge, USA, 1986.
  • 4Smolensky P. Information processing in dynamical systems: foundations of harmony theory[C]// Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Cambridge, USA, 1986.
  • 5Freund Y, Haussler D. Unsupervised learning of distributions on binary vectors using two layer networks[R]. Santa Cruz: University of California, UCSC-CRL-94-25, 1994.
  • 6Roux N L, Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008,20(6): 1631-1649.
  • 7Hinton G E. Training products of experts by minimizing contrastive divergence [J]. Neural Computation, 2002, 14(8): 1771-1800.
  • 8Cho K Y. Improved learning algorithms for restricted Boltzmann machines[D]. Espoo: Aalto University,2011.
  • 9Teh Y W, Hinton G E. Rate-coded restricted Boltzmann machines for face recognition[C]// Advances in Neural Information Processing Systems 13, MIT Press, 2001: 908-914.
  • 10Salakhutdinov R, Mnih A, Hinton G E. Restricted Boltzmann machines for collaborative filtering[C]// Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, 2007: 791-798.

共引文献117

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部