期刊文献+

Enhanced energy-storage performance in a flexible film capacitor with coexistence of ferroelectric and polymorphic antiferroelectric domains 被引量:1

原文传递
导出
摘要 Advances in flexible electronics are driving dielectric capacitors with high energy storage density toward flexibility and miniaturization.In the present work,an all-inorganic thin film dielectric capacitor with the coexistence of ferroelectric(FE)and antiferroelectric(AFE)phases based on Pb_(0.96)La_(0.04)(Zr_(0.95)Ti_(0.05))O_(3)(PLZT)was prepared on a 2D fluorophlogopite mica substrate via a simple one-step process.The flexible capacitor exhibits a high recoverable energy density(U_(rec))of z 44.2 J/cm^(3),a large electric breakdown strength(E BDS)of 3011 kV/cm,excellent frequency stability(500 Hz-20 kHz)and high thermal stability over 30-190℃.It also demonstrates an outstanding bending endurance,which can maintain a high energy storage performance under various bending radii(R=2-10 mm)or 103 repeated bends at 4 mm.The FE phase is stable near the film surface and the interface with the bottom electrode.The AFE phase with multi-domains has incommensurate modulation structures with super-periodicity of 6.5,6.9 and 5.2.It indicates that the PLZT/LNO/F-Mica capacitor has high potential for energy storage application and may provide great opportunities for exploring new energy storage materials.
出处 《Journal of Materiomics》 SCIE 2022年第2期375-381,共7页 无机材料学学报(英文)
基金 This work was supported by the National Natural Science Foundation of China(Grant Nos.51971030 and 11775018) Beijing Municipal Natural Science Foundation 2202032.
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部