期刊文献+

基于Finsler引理的一类连续时间多时滞系统稳定性分析

Stability Analysis of a Class of Continuous Time Systems with Multiple Delays Based on Finsler Lemma
下载PDF
导出
摘要 针对具有多个变时滞的系统,为简化其稳定性判据,首先将动力学方程转化为代数方程,其次运用Finsler引理给出系统稳定的新的判别定理,然后构造Lyapunov-Krasovskii泛函对定理进行严格的数学证明。在此基础上,选择合适的正交补矩阵对稳定性条件作进一步简化。最后通过2个数值算例对结论进行验证。结果表明:给出的定理可简单有效地判别带有多个变时滞系统的稳定性。 For systems with multiple time-varying delays,in order to simplify the stability criterion,firstly,the dynamic equation is transformed into an algebraic equation.Secondly,a new criterion theorem for system stability is given by using Finsler lemma,and then a Lyapunov-Krasovskii functional is constructed to prove the theorem strictly.On this basis,an appropriate orthogonal complement matrix is selected to further simplify the stability condition.Finally,the conclusion is verified by two numerical examples.The results show that the theorem given in this paper can simply and effectively judge the stability of systems with multiple time-varying delays.
作者 廖永龙 宋嘉琪 LIAO Yonglong;SONG Jiaqi(Department of Mathematics and Physics, Beijing Institute of Petrochemical Technology, Beijing 102617, China)
出处 《北京石油化工学院学报》 2022年第1期65-70,共6页 Journal of Beijing Institute of Petrochemical Technology
基金 北京市教育委员会科技计划一般项目(KM202110017002,KM201910017002) 北京石油化工学院“以学生为中心教学范式改革”专项(ZDFSGG20190801) 北京石油化工学院教育教学改革一般项目(YB20190803)。
关键词 稳定性 连续时间系统 时变时滞 Finsler引理 LYAPUNOV-KRASOVSKII泛函 stability continuous-time system time-varying delays Finsler lemma Lyapunov-Krasovskii functional
  • 相关文献

参考文献3

二级参考文献12

  • 1Su Juinghuei,IEEE Trans Automat Contr,1994年,39卷,6期,1341页
  • 2Crolla D,喻凡.车辆动力学及其控制?北京:人民交通出版社,2003.
  • 3Al-Holon N, Lahdhiri T, Joo D S, Weaver J, Al-Abbas F. Sliding mode neural network inferencefuzzy logic control for active suspension systems. IEEE Trans. Fuzzy Syst” 2002,10(2): 234-246.
  • 4Du H P, Zhang N. Fuzzy control for nonlinear uncertain electrohydraulic active suspensions withinput constraint. IEEE Trans. Fuzzy Systems, 2009, 17(2): 343-356.
  • 5Yu M, Choi S B, D X M, et al. Fuzzy neural network control for vehicle stability utilizingmagnetorheological suspension system. Journal of International Material Systems and Structures,2009,20(4): 457-466.
  • 6Gao H J, Sun W C, Shi P. Robust sampled-data control for vehicle active suspensions systems.IEEE Trans. Control Syst. Techno” 2010, 18(1): 238-245.
  • 7Fialhm I, Balas G J. Road adaptive active suspension design using linear parameter-varyinggain-scheduling. IEEE Trans. Control Syst. Technol., 2002, 10(1): 43-54.
  • 8Chantranuwathana S, Peng H. Adaptive robust force control for vehicle active suspensions. Int.J. Adaptive Control and Signal Processing, 2009,23(3): 855-868.
  • 9Liu H, Nonami K, Hagiwara T. Active following fuzzy output feedback sliding mode control ofreal-vechicle semi-active suspensions. J. of Sound and Vibration^ 2008, 314: 39-52.
  • 10Du H P, Zhang N. Control of active vehicle suspensions with actor time delay. J. Sound Vib.^2007, 301: 236-252.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部