摘要
研究了二维有界区域上带非线性梯度项的一类抛物方程的解在有限时间的爆破问题.假设解在区域的边界上满足非线性条件,当爆破发生时,通过构造辅助函数,利用能量估计的方法和微分不等式技术,得到了爆破时间的下界.对方程中的参数做出一定的限制之后,证明了全局解的存在性.
In this paper,the blow-up problem in finite time for solution of a class of parabolic equations with nonlinear gradient term in two-dimensional bounded domain was studied.Assuming that the solutions satisfied the nonlinear conditions on the boundary of the region,the lower bound of the blow-up time could be obtained by constructing the auxiliary function,using the energy estimation method and the differential inequality technique when the blow-up occurred.After limiting the parameters in the equation,the existence of global solutions were proved.
作者
李远飞
LI Yuanfei(School of Data Science,Guangzhou Huashang College,Guangzhou 511300,China)
出处
《杭州师范大学学报(自然科学版)》
CAS
2022年第2期169-178,共10页
Journal of Hangzhou Normal University(Natural Science Edition)
基金
广东省普通高校重点项目(2019KZDXM042)
广州华商学院科研团队项目(2021HSKT01).
关键词
非线性梯度项
爆破
下界
全局存在性
nonlinear gradient term
blow up
lower bound
global existence