期刊文献+

顶点覆盖约束下的同类机排序算法研究

An Algorithm on Uniform Machine Scheduling with Vertex Cover Constraints
下载PDF
导出
摘要 给定m台同类机和n个工件,其中第j台机器的速度为sj,第i个工件的加工时间为pi并且在第j台机器上的负载为pi sj.构造一个顶点赋权无向图G=(V,E;w),其中图G的n个顶点代表这n个工件,顶点权重代表相应工件的加工时间.本文研究顶点覆盖约束下的同类机排序问题.该问题是两个组合最优化问题的组合问题,其目标为首先确定图G的一个顶点覆盖,即图的一个顶点子集,使得图中每一条边都至少存在一个顶点属于该子集;然后把这个子集所代表的相应工件集放到m台同类机上加工,使得最大完工时间最小.该问题是NPhard的.本文基于分层算法和LSPT算法设计一个(2+(m−1)·8m/Σ_(j=1^(m)8j))-近似算法,当所有机器的速度都相差不大时,该算法的近似效果较好. Given m uniform machines and n jobs,let the speed of the jth machine be sj,the processing time of the ith job be pi,which involves that the load on the jth machine is pi sj.Construct a vertex weighted undirected graph G=(V,E;w),where the n vertices of the graph represent the n jobs and the vertex weights represent the processing time of the corresponding jobs.This paper studies the uniform machine scheduling problem with some vertex cover constraints,which is a combinatorial problem of two combinatorial optimization problems.The goal is to firstly determine a vertex cover of the graph G,that is,a vertex subset of the graph,such that the subset contains at least one endpoint of each edge and then to minimize the makespan when all the jobs corresponding to the subset are put to process on the m uniform machines.The problem is NPhard.We design a(2+(m−1)·8m/Σ_(j=1^(m)8j))approximate algorithm based on the layering algorithm and the LSPT algorithm for it.It is realized that the approximation ratio is relatively good when the speeds of all machines are not much different.
作者 嵇雯蕙 陈智斌 Ji Wenhui;Chen Zhibin(School of Mathematics,Kunming University of Science and Technology,Kunming 650000,China)
出处 《数学理论与应用》 2022年第1期104-110,共7页 Mathematical Theory and Applications
基金 国家自然科学基金项目(No.11761042)资助。
关键词 组合最优化问题 顶点覆盖 分层 同类机 近似比 排序 Combination optimization problem Vertex cover Layering Uniform machine Approximation ratio Scheduling
  • 相关文献

参考文献1

二级参考文献10

  • 1M. R, Garey and D. S. Johnson, Computers and Intractability, W, H. Freeman and Company, San Francisco, 1979.
  • 2G. Woeginger, A polynomial time approximation scheme for minimizing the minimum machine completion time, Oper. Res. Letters, 1997, 20: 149-154.
  • 3B. L. Deuermeryer, D. K. Friesen and M. A. Langston, Scheduling to maximize the minimum processor finish time in a mutiprocessor system, SIAM J. Algorithms Discrete Methods, 1982, 3:190-196.
  • 4J. Csirik, H. Kellerer and G. Woeginger, The exact LPT-bound for maximizing the minimumcompletion time, Oper. Res. Letters, 1992, 11: 281-287.
  • 5Y. Azar and L. Epstein, On-line machine covering, Algorithms-ESA'97, Lecture Notes in Computer Science 1284, Springer Verlag, 1997, 23-36.
  • 6Y, He and Z. Y. Tan, Randomized on-line and semi-on-line scheduling on identical machines,Asia-Pacific Journal of Operational Research, 2003 20: 31-40.
  • 7Y, He and Z. Y. Tan, Ordinal on-line scheduling for maximizing the minimum machine completion time, Journal of Combinatorial Optimization, 2002, 6: 199-206.
  • 8Y. He and C. C. Zhang, Semi on-line scheduling on two identical machines, Computing, 1999, 62:179-187.
  • 9Y. He, Semi on-line scheduling problem for maximizing the minimum machine completion time,Acta Mathematica Applicate Sinica, 2001, 17: 107-113.
  • 10L. Epstein, Tight bounds for bandwidth allocation on two links, Proc. of the 3rd ARAUNE, 2002, 39-50.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部