期刊文献+

Research on time-frequency cross mutual of motor imagination data based on multichannel EEG signal

下载PDF
导出
摘要 At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.
作者 REN Bin PAN Yunjie 任彬;PAN Yunjie(Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,P.R.China)
出处 《High Technology Letters》 EI CAS 2022年第1期21-29,共9页 高技术通讯(英文版)
基金 Supported by the National Natural Science Foundation of China(No.51775325) National Key R&D Program of China(No.2018YFB1309200) the Young Eastern Scholars Program of Shanghai(No.QD2016033).
  • 相关文献

参考文献4

二级参考文献77

  • 1高上凯.无创高通讯速率的实时脑-机接口系统[J].中国基础科学,2007(3):25-26. 被引量:12
  • 2何庆华,吴宝明,彭承琳,王禾,钟渝.基于小波和神经网络的视觉诱发电位识别方法[J].仪器仪表学报,2007,28(6):1003-1006. 被引量:10
  • 3WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology: A review of the first international meeting. [ J ]. IEEE Transactions on Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, 2000, 8(2) :164-73.
  • 4WOLPAW J R. Brain-computer interfaces as new brain output pathways [ J ]. Journal of Physiology, 2007, 579(3): 613 - 619.
  • 5REGAN D. Electrical responses evoked from the human brain [ J ]. Scientific American, 1985, 143 (241) :134-146.
  • 6CELESIA G G, PEACHEY N S, BRIGELL M, et al. Visual evoked potentials: Recent advances [ J ]. Electroencephalography and Clinical Neurophysiology,1996, 46(3) : 3-14.
  • 7ODOM J V, BACH M, BARBER C, et al. Visual evoked potentials standard ( 2004 ) [ J ]. Documenta Ophthalmologica Advances in Ophthalmology, 2004, 108(2) :115-23.
  • 8VIDAL J J. Real-time detection of brain events in EEG [J]. Proceedings of the IEEE, 1977, 65 (5): 633-641.
  • 9SUTrER E E. The brain response interface: communication through visually-induced electrical brain responses [ J ]. Journal of Microcomputer Applications, 1992, 15(1): 31-45.
  • 10REGAN D. Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine [ M]. New York: Appleton & Lange, 1989.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部