期刊文献+

反挤压Zn-Mn二元合金的微观组织与力学性能

Microstructural and mechanical properties of indirectly extruded Zn-Mn binary alloy
下载PDF
导出
摘要 采用电子背散射衍射(EBSD)和室温拉伸试验,研究了不同挤压速度对Zn-Mn二元合金的微观组织与力学性能的影响.研究结果表明,挤压态Zn-Mn二元合金发生完全动态再结晶.在相同的Mn质量分数下,随着挤压速度的提高,Zn-Mn二元合金的强度上升、塑性下降,平均晶粒尺寸增加.晶粒尺寸和第二相是影响Zn-0.3Mn和Zn-0.7Mn力学性能的主要因素.在相同的挤压速度下,随着Mn质量分数的增加,第二相尺寸和数量增加,平均晶粒尺寸减小,但Zn-Mn二元合金的强度下降,伸长率显著上升. The effects of extrusion speed on the microstructure and mechanical properties of Zn-Mn binary alloy were studied by electron backscatter diffraction(EBSD) and tensile test at room temperature. The results show that the as-extruded Zn-Mn binary alloy has complete dynamic recrystallization. At the same Mn content, with the increase of extrusion speed, the strength of Zn-Mn binary alloy increases, the plasticity decreases, and the average grain size increases. Grain size and second phase are the main factors afflicting the mechanical properties of Zn-0.3 Mn and Zn-0.7 Mn. At the same extrusion speed, with the increase of manganese content, the second phase size and number increase, and the average grain size decreases, but the strength of Zn-Mn binary alloy decreases and the elongation increases significantly.
作者 吕金泽 李博轩 王雨轩 李洪晓 任玉平 王秀伟 石建华 秦高梧 LüJinze;Li Boxuan;Wang Yuxuan;Li Hongxiao;Ren Yuping;Wang Xiuwei;Shi Jianhua;Qin Gaowu(Key Laboratory for Anisotropy and Texture of Materials Ministry of Education,Shenyang 110819,China;School of Materials Science and Engineering,Northeastern University,Shenyang 110819,China;Xi'an Edwansi Medical Technology Co.,Ltd.,Xi'an 710000,China)
出处 《材料与冶金学报》 CAS 北大核心 2022年第2期136-141,共6页 Journal of Materials and Metallurgy
基金 国家自然科学基金(51871047).
关键词 Zn-Mn二元合金 反挤压 微观组织 力学性能 Zn-Mn binary alloy indirect extrusion microstructure mechanical property
  • 相关文献

参考文献1

二级参考文献41

  • 1M.E Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27 (2006) 1728-1734.
  • 2R. Waksman, J. Interv. Card. 19 (2006) 414-421.
  • 3B. Liu, Y.E Zheng, Acta Biomater. 7 (2011) 1407-1420.
  • 4H. Hermawan, D. Dub6, D. Mantovani, Acta Biomater. 6 (2010) 1693 - 1697.
  • 5M. Schinhammer, A.C. Hinzi, J.E L6ffler, EJ. Uggowitzer, Acta Biomater. 6 (2010) 1705-1713.
  • 6F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, Biomaterials 27 (2006) 1013-1018.
  • 7X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, Biomaterials 30 (2009) 484-498.
  • 8G. Song, S. Song, Adv. Eng. Mater. 9 (2007) 298-302.
  • 9G. Milazzo, S. Caroli, R.D. Braun, J. Electrochem. Soc. 125 (1978) 260C-261C.
  • 10J.L. Yang, H.C. Chen, Chemosphere 53 (2003) 877-882.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部