期刊文献+

Common mtDNA variations at C5178a and A249d/T6392C/G10310A decrease the risk of severe COVID-19 in a Han Chinese population from Central China

下载PDF
导出
摘要 Background:Mitochondria have been shown to play vital roles during severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection and coronavirus disease 2019(COVID-19)development.Currently,it is unclear whether mitochondrial DNA(mtDNA)variants,which define mtDNA haplogroups and determine oxidative phosphorylation performance and reactive oxygen species production,are associated with COVID-19 risk.Methods:A population-based case-control study was conducted to compare the distribution of mtDNA variations defining mtDNA haplogroups between healthy controls(n=615)and COVID-19 patients(n=536).COVID-19 patients were diagnosed based on molecular diagnostics of the viral genome by qPCR and chest X-ray or computed tomography scanning.The exclusion criteria for the healthy controls were any history of disease in the month preceding the study assessment.MtDNA variants defining mtDNA haplogroups were identified by PCR-RFLPs and HVS-I sequencing and determined based on mtDNA phylogenetic analysis using Mitomap Phylogeny.Student’s t-test was used for continuous variables,and Pearson’s chi-squared test or Fisher’s exact test was used for categorical variables.To assess the independent effect of each mtDNA variant defining mtDNA haplogroups,multivariate logistic regression analyses were performed to calculate the odds ratios(OR)and 95%confidence intervals(CI)with adjustments for possible confounding factors of age,sex,smoking and diseases(including cardiopulmonary diseases,diabetes,obesity and hypertension)as determined through clinical and radiographic examinations.Results:Multivariate logistic regression analyses revealed that the most common investigated mtDNA variations(>10%in the control population)at C5178 a(in NADH dehydrogenase subunit 2 gene,ND2)and A249 d(in the displacement loop region,D-loop)/T6392 C(in cytochrome c oxidase I gene,CO1)/G10310 A(in ND3)were associated with a reduced risk of severe COVID-19(OR=0.590,95%CI 0.428–0.814,P=0.001;and OR=0.654,95%CI 0.457–0.936,P=0.020,respectively),while A4833 G(ND2),A4715 G(ND2),T3394 C(ND1)and G5417 A(ND2)/C16257 a(D-loop)/C16261 T(D-loop)were related to an increased risk of severe COVID-19(OR=2.336,95%CI 1.179–4.608,P=0.015;OR=2.033,95%CI 1.242–3.322,P=0.005;OR=3.040,95%CI 1.522–6.061,P=0.002;and OR=2.890,95%CI 1.199–6.993,P=0.018,respectively).Conclusions:This is the first study to explore the association of mtDNA variants with individual’s risk of developing severe COVID-19.Based on the case–control study,we concluded that the common mtDNA variants at C5178 a and A249 d/T6392 C/G10310 A might contribute to an individual’s resistance to developing severe COVID-19,whereas A4833 G,A4715 G,T3394 C and G5417 A/C16257 a/C16261 T might increase an individual’s risk of developing severe COVID-19.
出处 《Military Medical Research》 SCIE CSCD 2022年第1期53-62,共10页 军事医学研究(英文版)
基金 supported by grants from the Special Project of Contingency Research for COVID-19(2020XGFYZR11) the Cultivating Project for Young Scholar at Hubei University of Medicine(2018QDJZR01)awarded to Dr.Fuyun Ji the Special Project of Contingency Research for COVID-19 at Hubei University of Medicine(2020XGFYZR03)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部