期刊文献+

主动式外墙外保温系统节能性研究 被引量:6

Research on the Energy-saving of Active External Thermal Insulation Systems
原文传递
导出
摘要 本文主要针对天津市某一主动式外墙外保温系统(保温层内嵌加热盘管型),利用TRNSYS软件搭建仿真平台,对其供暖季能耗进行了逐时仿真模拟研究,并与其对应的被动式(传统)外墙外保温系统进行对比分析,给出了不同朝向下主动式外墙外保温系统设计热负荷降低率和供暖季相对节能率。并进一步研究了室内温度和盘管进水温度对主动式外墙外保温系统节能性的影响。研究表明:主动式外墙外保温系统可显著降低建筑外墙的供暖设计热负荷与供暖季总能耗,而且可以直接利用各种低品位能源。模拟研究条件下,各朝向外墙设计热负荷降低率在36.28%~42.33%之间,相对节能率在27.70%~35.01%之间,且北向外墙高于南向外墙;相对节能率随着室内供暖温度提高而降低,随着盘管进水温度的提高而提升。 This paper focuses on an active external thermal insulation system with heating coil embedded in the thermal insulation layer in Tianjin, and uses TRNSYS software to build a simulation platform, and conducts a time-by-time simulation study on the energy consumption during the heating season. Compares and analyzes active external thermal insulation system and its corresponding passive(traditional) external thermal insulation system. The design reduction rate of heat load, and the relative energy-saving rate of heating season for the active external thermal insulation system with different orientations are given. Furthermore, the influence of indoor temperature and coil inlet water temperature on the energy-saving performance of active external thermal insulation system is further studied. Research shows that active external wall insulation system can significantly reduce the heating design heat load and total energy consumption of the heating season of building external walls, and can directly use various low-grade energy sources. Under the conditions of the simulation study, the design heat load reduction rate of walls in different orientations is between 36.28%~42.33%, and the relative energy-saving rate is within 27.70%~35.01%, and the relative energy-saving rate of the north wall is higher than that of the south wall. The relative energy-saving rate decreases with the increase of indoor heating temperature and increases with the increase of inlet water temperature of the coil.
作者 赵晓凯 赵树兴 张江铭 梁贺斐 ZHAO Xiaokai;ZHAO Shuxing;ZHANG Jiangming;LIANG Hefei(Tianjin Chengjian University,Tianjin 300384,China;Tianjin Urban Planning and Design Institute,Tianjin 300201,China)
出处 《建筑科学》 CSCD 北大核心 2022年第2期202-208,共7页 Building Science
关键词 建筑节能 主动式保温 外墙外保温 保温层内嵌加热盘管 TRNSYS 节能性 building energy conservation active insulation external thermal insulation embedded heating coil in the insulation layer TRNSYS energy-saving
  • 相关文献

参考文献8

二级参考文献61

  • 1Snijders AL. Aquifer seasonal cold storage for space conditioning: Some cost-effective applications [ J]. ASHRAE Transactions, 1992,98(1) :1015-1022.
  • 2Meierhans RA. Slab cooling and earth coupling [ J ]. ASHRAE Transactions, 1993,99 ( 2 ) : 511 - 518.
  • 3Meierhans RA. Room air conditioning by means of overnight cooling of the concrete ceiling [ J ]. ASHRAE Transactions, 1996, 102 ( 1 ) :693 - 697.
  • 4Xinhua Xu, Shengwei Wang, Jinbo embedded structures in buildings for sources: A review [ J ]. Energy and 1567 ~ 1581. Wang, et al. Active pipeutilizing low-grade energy Buildings, 2010,42 ( 10 ) :.
  • 5Stephenson DG, Mitalas GP. Cooling load calculations by thermal response factors [ J]. ASHRAE Transactions, 1967,73 ( 1 ) : 1 - 7.
  • 6Wang SW,Chen YM. A simple procedure for calculating thermal response factors and conduction transfer functions of muhilayer walls [ J ]. Applied Thermal Engineering, 2002,22 ( 3 ) : 333-338.
  • 7Xinhua Xu, Shengwei Wang. Optimal simplified thermal models of building envelope based on frequency domain regression using genetic algorithm [ J ]. Energy and Buildings, 2007,39 ( 5 ) : 525-536.
  • 8颜启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,1986.
  • 9清华大学建筑节能研究中心.中国建筑节能年度发展研究报告[M].北京:中国建筑工业出版社,2013.
  • 10Xu Xinhua,Wang Shengwei, Wang Jinbo, et al. Ac-tive pipe-embedded structures in buildings for utili-zing low-grade energy sources: a review[J]. Energyand Buildings, 2010,42(10) : 1567-1581.

共引文献238

同被引文献38

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部