期刊文献+

用于稳态视觉诱发电位目标识别的多尺度特征融合卷积神经网络方法 被引量:6

A Multi-Scale Feature Fusion Convolutional Neural Network Approach for Steady-State Visual Evoked Potential Target Recognition
下载PDF
导出
摘要 针对传统稳态视觉诱发电位(SSVEP)脑电信号目标识别方法分类精度低、提取特征不充分、方法复杂且耗时等问题,提出一种基于多尺度特征融合卷积神经网络的SSVEP信号分类识别方法(SSVEP-MF)。利用小波变换将多通道SSVEP信号整合转化为二维图像作为输入样本集;建立多尺度特征融合卷积神经网络模型(MFCNN),该模型利用三层二维卷积核实现图像样本不同尺度特征的充分提取,构建多尺度特征融合单元对不同层级特征进行融合,并通过全连接等操作完成模型的训练;将样本集输入到MFCNN模型中实现脑电信号特征自适应提取及端到端分类。所提SSVEP-MF方法能够充分提取信号各层级特征,实现短时间视觉刺激下SSVEP信号的有效识别,并具有较高的目标识别效率。实验结果表明,在1 s刺激时长时,相比传统功率谱密度分析方法、典型相关分析方法以及普通卷积结构方法,所提方法的识别准确率分别提升了18.57%、20.08%及7.03%,有效提高了基于稳态视觉诱发电位范式下脑机接口的信号识别性能。 A multi-scale feature fusion convolutional neural network-based SSVEP signal classification and recognition method is proposed to solve the problems of low classification accuracy,inadequate feature extraction,complex and time-consuming methods of traditional steady-state visual evoked potential(SSVEP-MF)signal target recognition methods.Firstly,the wavelet transform is used to integrate the multi-channel SSVEP signals into two-dimensional images as the input sample set;secondly,a multi-scale feature fusion convolutional neural network model(MFCNN)is established,which uses a three-layer two-dimensional convolutional kernel to achieve sufficient extraction of features at different scales of image samples,constructs multi-scale feature fusion units to fuse features at different levels,and completes the training of the model through operations such as full connectivity;finally,the sample set is input to the MFCNN model to achieve adaptive extraction of EEG signal features and end-to-end classification.The proposed SSVEP-MF method can fully extract the features at each level of the signal,achieve effective recognition of SSVEP signals under short-time visual stimulation,and have high target recognition efficiency.The experimental results show that the recognition accuracy of the proposed method is improved by 18.57%,20.08%and 7.03%,respectively,compared with the traditional power spectral density analysis method,typical correlation analysis method and common convolutional structure method at 1 s stimulus duration,which effectively improves the signal recognition performance of brain-machine interface based on the steady-state visual evoked potential paradigm.
作者 胡勤伟 陶庆 王妮妮 陈清正 吴腾辉 张小栋 HU Qinwei;TAO Qing;WANG Nini;CHEN Qingzheng;WU Tenghui;ZHANG Xiaodong(School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China;School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第4期185-193,202,共10页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51865056) 新疆维吾尔自治区区域协同创新专项(科技援疆计划)资助项目(2020E0259)。
关键词 稳态视觉诱发电位 目标识别 多尺度特征融合 卷积神经网络 小波变换 脑机接口 steady-state visual evoked potentials target recognition multi-scale feature fusion convolutional neural network wavelet transform brain-computer interface
  • 相关文献

参考文献11

二级参考文献87

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2杨帮华,颜国正,丁国清,于莲芝.脑机接口关键技术研究[J].北京生物医学工程,2005,24(4):308-310. 被引量:21
  • 3李宏建.功能性电刺激疗法改善卒中恢复[J].国际脑血管病杂志,2006,14(7):551-551. 被引量:2
  • 4官金安,陈亚光.相干平均单次提取脑-机接口信号[J].华中科技大学学报(自然科学版),2007,35(1):11-13. 被引量:4
  • 5谢松云,张振中,张伟平,赵海涛.基于ICA的脑电信号去噪方法研究与应用[J].中国医学影像技术,2007,23(10):1562-1565. 被引量:12
  • 6VIALATTE F, MAURICE M, DAUWELS J. Steady- state visually evoked potentials: focus on essential par- adigms and future perspectives I-J]. Progress in Neu- robiology, 2010, 90(4): 418-438.
  • 7WANG Yijun, GAO Xiaorong, HONG Bo, et al. Brain-computer interfaces based on visual evoked po- tentials [J]. IEEE Engineering in Medicine and Biolo- gy Magazine, 2008, 27(5): 64-71.
  • 8REGAN D. Electrical responses evoked from the hu- man brain [J]. Scientific American, 1979, 241(6): 134-146.
  • 9MIDDENDORF M, MCMILLAN G, CALHOUN G, et al. Brain-computer interfaces based on the steady- state visual-evoked response [J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 211-214.
  • 10CHENG Ming, GAO Shangkai. An EEG-based cursor control system [C]// Annual International Conference of the IEEE Engineering in Medicine and Biology. Pis- cataway, NJ, USA: IEEE, 1999: 669-699.

共引文献167

同被引文献51

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部