期刊文献+

基于DBSCAN与LightGBM的盾构推进系统故障诊断

Fault Diagnosis of Shield Machine Propulsion System Based on DBSCAN and LightGBM
原文传递
导出
摘要 针对目前现有的盾构推进系统故障诊断算法,大部分无法区分已知故障与未知故障的问题。提出结合DBSCAN与LightGBM的综合盾构推进系统故障诊断算法,通过DBSCAN聚类算法将采样数据分为已知类别数据与未知故障数据,然后将已知类别数据输入LightGBM区分故障类别,两个算法相结合可充分利用工程实际环境中的大量无标签数据与少量的有标签数据,有效区分故障类别。 To solve the problem that most of the existing fault diagnosis algorithms of the shield propulsion system cannot distinguish between known faults and unknown faults,a comprehensive fault diagnosis algorithm combining DBSCAN and LightGBM is proposed.DBSCAN clustering algorithm is applied to divide the sampled data into known data and unknown fault data,and then inputs the known data into LightGBM for fault classification.The combination of this two algorithms can make full use of the large amount of unlabeled data and small amount of labeled data in the actual engineering environment and distinguish fault categories effectively.
出处 《机电一体化》 2022年第1期34-40,共7页 Mechatronics
关键词 故障诊断 盾构推进系统 DBSCAN LightGBM fault diagnosis shield machine propulsion system DBSCAN LightGBM
  • 相关文献

参考文献5

二级参考文献29

  • 1张建明,曾建武,谢磊,王树青.基于粗糙集的支持向量机故障诊断[J].清华大学学报(自然科学版),2007,47(z2):1774-1777. 被引量:23
  • 2谷波,韩华,洪迎春,康嘉.基于SVM的制冷系统多故障并发检测与诊断[J].化工学报,2011,62(S2):112-119. 被引量:10
  • 3王红军,张建民,徐小力.基于支持向量机的机械系统状态组合预测模型研究[J].振动工程学报,2006,19(2):242-245. 被引量:17
  • 4胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 5[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000.
  • 6[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998.
  • 7[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231.
  • 8[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20.
  • 9Jack L B,Nandi A K.Fault detection using support vector machines and artificial neural networks augmented by genetic algorithms[J].Mechanical Systems and Signal Processing,2002,16(3):373-390.
  • 10Widodo A,Yang B S.Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors[J].Export Systems and Applications,2007,33(1):241-250.

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部