期刊文献+

不确定离散时间系统的有限时间预见跟踪控制 被引量:1

Finite-time preview tracking control for uncertain discrete-time systems
原文传递
导出
摘要 研究一类不确定离散时间系统的有限时间鲁棒预见控制问题.与以往对误差信号和系统方程取差分不同,通过引入辅助变量,并用系统状态向量及输入向量与相应辅助变量之差代替通常的状态差分,避免对时变的系数矩阵取差分,使得扩大误差系统的构造成为可能.另外,所推导的扩大误差系统不再包含误差向量,这不仅能降低系统的阶数而且能推广适用对象.针对所求得的不确定系统的扩大误差系统,分别引入状态反馈和静态输出反馈,并利用Lyapunov函数方法导出闭环系统渐近稳定的充分条件,该条件可以通过求解一个LMI问题而实现.所得控制器回到原系统即可得到带有预见作用的预见控制器.数值仿真验证了研究结果的有效性. The problem of finite-time robust preview control is proposed for a class of uncertain discrete-time systems.It is different from the difference of error signals and system equations.By introducing auxiliary variables,we use the difference between the system state variables,input variables,and the corresponding auxiliary variables,instead of the usual difference between system states,which makes it possible to construct an augmented error system.In addition,the augmented error system derived no longer contains error vectors,which not only reduces the order of the system,but also extends the applicable object.For the augmented error system,the state feedback and output feedback are introduced,receptively,and based on the Lyapunov stability theory,sufficient conditions are derived for the robust asymptotic stability of the closed-loop systems.The conditions can be realized by solving an LMI problem.The controller returns to the original system,and the preview controller is obtained.The numerical simulation examples also illustrate the effectiveness of the results.
作者 李丽 于晓 LI Li;YU Xiao(School of Information Management and Statistics,Hubei University of Economics,Wuhan 430205,China;School of Science,Shangdong Jianzhu University,Jinan 250101,China;Hubei Center for Data and Analysis,Hubei University of Economics,Wuhan 430205,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第3期753-762,共10页 Control and Decision
基金 国家自然科学基金项目(61903130) 山东省自然科学基金项目(ZR2020QA036)。
关键词 扩大误差系统 预见跟踪控制 时变不确定系统 有限时间稳定 状态反馈 输出反馈 augmented error system preview tracking control time-varying uncertain system finite time stable state feedback output feedback
  • 相关文献

参考文献2

二级参考文献18

  • 1Marzbanrada J, Ahmadi G, Zohoorc H, Hojjat Y. Stochastic optimal preview control of a vehicle suspension. Journal of Sound and Vibration, 2004, 275(3-5): 973-990.
  • 2Hat A. Optimal linear preview control of active vehicle suspension. In: Proceedings of the 29th Conference on Decision and Control. Hawaii, USA: IEEE, 1990. 2779-2784.
  • 3Hac A, Youn I. Optimal semi-active suspension with preview based on a quarter car model. In: Proceedings of American Control Conference. Boston, USA: IEEE, 1991. 433-438.
  • 4Kojima A, Ishijima S. Formulas on preview and delayed H∞ control. IEEE Transactions on Automatic Control, 2006, 51(12): 1920-1937.
  • 5Tadmor G, Mirkin L. H∞ control and estimation with preview -- part Ⅰ: matrix ARE solutions in continuous time. IEEE Transactions on Automatic Control, 2005, 50(1): 19-28.
  • 6Tadmor G, Mirkin L. H∞ control and estimation with preview -- part Ⅱ: fixed-size ARE solutions in discrete time. IEEE Transactions on Automatic Control, 2005, 50(1): 29-40.
  • 7Halpern M E. Optimal tracking with previewed commands. IEE Proceedings D: Control Theory and Applications, 1991, 138(3): 237-241.
  • 8Bender E K. Optimum linear preview control with application to vehicle suspension. ASME Journal of Basic Engineering, 1968, 90(2): 213-221.
  • 9Zhang H S, Xie L H, Soh Y C, Zhang D. H∞ fixed-lag smoothing for discrete linear time-varying systems. Automatica, 2005, 41(5): 839-846.
  • 10Anderson B D O, Moore J B. Optimal Filtering. New Jersey: Prentice-Hall, 1979.

共引文献8

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部