期刊文献+

Development of Pulsar Digital Backend Based on RFSoC 被引量:2

下载PDF
导出
摘要 Radio Frequency System on Chip(RFSo C)offers great potential for implementing a complete next generation signal processing system on a single board for radio astronomy.We designed a pulsar digital backend system based on the ZCU111 board.The system uses RFSo C technology to implement digitization,channelization,correlation and high-speed data transmission in the Xilinx ZU28 DR device.We have evaluated the performance of the eight 12-bit RF-ADCs,which are integrated in RFSo C,with the maximum sampling rate of 4.096 GSPS.The RF-ADC sampling frequency,channel bandwidth and time resolution can be configured dynamically in our designed system.To verify the system performance,we deployed the RFSo C board on the Nanshan 26 m radio telescope and observed the pulsar signal with a frequency resolution of 1 MHz and time resolution of 64μs.In the observation test,we obtained pulsar profiles with high signal-to-noise ratio and accurately searched the DM values.The experimental results show that the performance of RF-ADCs,FPGA and CPU cores in RFSo C is sufficient for radio astronomy signal processing applications.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2022年第2期16-28,共13页 天文和天体物理学研究(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.12073067) the program of the Light in China’s Western Region(2019-XBQNXZ-B-018) the Youth Innovation Promotion Association of CAS(2021059)。
  • 相关文献

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部