摘要
现有面部表情识别方法提取表情特征时通常容易与其它面部属性混合,不利于面部表情的识别.对此,文中提出结合自注意力特征过滤分类器和双分支生成对抗网络的面部表情识别方法.首先,使用双分支生成对抗网络学习辨别性的表情表示,提出自注意力特征过滤分类器作为表情的分类模块.使用级联的LayerNorm和ReLU将低激活单元归零并保留高激活单元,生成多级特征.使用自注意力融合输出多级特征的预测结果,在一定程度上消除噪声对识别结果的影响.然后,提出基于滑动模块的双重图像一致性损失监督模型,学习具有辨别性的表情表示,使用滑动窗口计算重构损失,关注细节信息.最后,在CK+、RAF-DB、TFEID、BAUM-2i数据集上的实验表明文中方法识别效果较优.
The expression features extracted by the existing facial expression recognition methods are usually mixed with other facial attributes,which is not conducive to facial expression recognition.A facial expression recognition model combining self-attention feature filter classifier and two-branch generative adversarial network is proposed.Two-branch generative adversarial network is introduced to learn discriminative expression representation,and a self-attention feature filtering classifier is proposed as the expression classification module.The cascaded LayerNorm and ReLU are employed to zero the low activation unit and retain the high activation unit to generate multi-level features.The self-attention is utilized to fuse and output the prediction results of multi-level features,and consequently the influence of noise on the recognition results is eliminated to a certain extent.A sliding module based dual image consistency loss supervised model is proposed to learn discriminative expression representations.The reconstruction loss is calculated by a sliding window and more attention is paid to the details.Finally,experiments on CK+,RAF-DB,TFEID and BAUM-2i datasets show the proposed model achieves better recognition results.
作者
程艳
蔡壮
吴刚
罗品
邹海锋
CHENG Yan;CAI Zhuang;WU Gang;LUO Pin;ZOU Haifeng(School of Computer and Information Engineering,Jiangxi Normal University,Nanchang 330022;Jiangxi Provincial Key Laboratory of Intelligent Education,Science and Technology Department of Jiangxi Province,Nanchang 330022)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2022年第3期243-253,共11页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.62167006,61967011)
国家社会科学基金重点项目(No.20AXW009)
江西省自然科学基金项目(No.20202BABL202033,20212BAB202017)
江西省教育厅人文社科重点项目(No.JD19056)
江西省科技创新基地计划省重点实验室项目(No.20212BCD42001)
江西省03专项及5G项目(No.20212ABC03A22)
江西省主要学科学术和技术带头人培养计划领军人才项目(No.20213BCJL22047)资助。
关键词
面部表情识别
双分支生成对抗网络
自注意力特征过滤分类器
滑动模块
Facial Expression Recognition
Two-Branch Generative Adversarial Network
Self-Attention Feature Filtering Classifier
Sliding Module