摘要
信道状态信息(channel state information,CSI)的精确获取是大规模天线发挥效能的关键。在现有的通信系统中,上下行链路互易性不理想时,基于码本进行下行链路的CSI反馈。随着天线规模的增大,码本CSI反馈所需要的开销也越来越大。给出了基于人工智能(artificial intelligence,AI)的CSI反馈压缩方法,分析了基于AI的CSI反馈的标准化影响、通信流程与面临的挑战,提供了评估结果。评估结果表明,相对于基于频域基向量压缩的码本CSI反馈,基于AI的CSI反馈在相同的反馈精度下可以显著地降低反馈开销。
Accurate acquisition of CSI(channel state information)is the key to the performance of massive MIMO.In current communication systems,when the reciprocity of uplink and downlink is not ideal,codebook-based CSI feedback is used for downlink CSI acquisition.With the increase of antenna scale,codebook-based CSI feedback needs more and more overhead.The CSI feedback compression method based on AI(artificial intelligence)was pre-sented,and the standardization impact,communication process and challenges of CSI feedback based on AI were analyzed.Besides,evaluation results were provided.The evaluation results show that compared with codebook-based CSI feedback based on frequency domain basis vector compression,CSI feedback based on AI can significantly re-duce the feedback cost at the same feedback accuracy.
作者
黄秋萍
刘晓峰
高秋彬
刘正宣
金立强
孙韶辉
HUANG Qiuping;LIU Xiaofeng;GAO Qiubin;LIU Zhengxuan;JIN Liqiang;SUN Shaohui(CICT Mobile Communications Technology Co.,Ltd.,Beijing 100083,China;State Key Laboratory of Wireless Mobile Communications,China Academy of Telecommunications Technology(CATT),Beijing 100191,China;China Academy of Information and Communications Technology(CAICT),Beijing 100191,China)
出处
《电信科学》
2022年第3期74-83,共10页
Telecommunications Science
基金
国家重点研发计划项目(No.2020YFB1807100)。