摘要
本研究以深度学习和边缘计算为基础,详细阐述了电力系统负荷预测的方法,并在此基础上分别建立了基于深度学习理论的电力短期负荷预测模型和基于边缘计算电力负荷预测模型,然后基于MATLAB平台分别对两种模型所选取的数据集进行仿真分析,并以N市某充电站为例,分析对比了两种模型对充电站电力负荷预测的准确性。研究结果表明,深度学习模型输出值与真实值相差较小,相关系数为0.99899,所建立的深度学习模型在数据特征挖掘和分类方面有绝对优势。
This study based on the deep learning and edge calculation,expounds on the power system load forecasting methods,and on this basis,respectively,set up power short-term load forecasting model based on the theory of the deep learning and power load forecasting model based on edge of computing,and then the selected two models respectively based on MATLAB platform by simulating the data set.Taking a charging station in N city as an example,the accuracy of the two models for power load prediction of the charging station is analyzed and compared.The research results show that the output value of the deep learning model has a small difference with the real value,and the correlation coefficient is 0.99899.The established deep learning model has absolute advantages in data feature mining and classification.
作者
张雄宝
江雄烽
阮诗迪
谢虎
Zhang Xiongbao;Jiang Xiongfeng;Ruan Shidi;Xie Hu(Power Dispatch and Control Center of Guangxi Power Grid Co.,Ltd.,Nanning 530013,China;Digital Grid Research Institute,China Southern Power Grid)
出处
《单片机与嵌入式系统应用》
2022年第4期6-10,共5页
Microcontrollers & Embedded Systems
基金
南方电网公司重点科技项目资助—智能电网省地调度主站边缘计算集群技术研发与工程示范(GXKJXM20190619)。
关键词
智能电网
短期负荷预测
深度学习
边缘计算
smart grid
short term load forecasting
deep learning
edge calculation