期刊文献+

基于改进MobileFaceNet的人脸识别方法 被引量:3

Face Recognition Method Based on Improved MobileFaceNet
下载PDF
导出
摘要 针对目前大多数人脸识别算法参数多、计算量大,难以部署到移动端和嵌入式设备中的问题,提出了一种基于改进MobileFaceNet的人脸识别方法。通过对MobileFaceNet模型结构的调整,将bottleneck模块优化为sandglass模块,改良深度卷积和逐点卷积的相对位置,适当增大sandglass模块的输出通道数,从而减少特征压缩时的信息丢失,增强人脸空间特征的提取。实验结果表明:改进后的方法在LFW测试数据集上准确率达99.15%,模型大小和计算量分别仅为原算法的61%和45%,验证了所提方法的有效性。 Most current face recognition algorithms are difficult to deploy to mobile terminals and embedded devices because of their many parameters and large amount of calculation,thus a face recognition method based on improved MobileFaceNet is proposed.By adjusting the structure of the MobileFaceNet model,the bottleneck module is optimized to the sandglass module,the relative position of depthwise convolution and pointwise convolution are improved,and the number of output channels of the sandglass module is appropriately increased,thereby reducing information loss during feature compression and enhancing extraction of the facial spatial features.The experimental results show that the improved method achieves an accuracy of 99.15%on the LFW test data set,and the model size and calculation amount are only 61%and 45%of that of the original algorithm,verifying the effectiveness of the proposed method.
作者 胡佳荣 孟文 赵晶晶 HU Jiarong;MENG Wen;ZHAO Jingjing(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,CHN)
出处 《半导体光电》 CAS 北大核心 2022年第1期164-168,共5页 Semiconductor Optoelectronics
关键词 人脸识别 MobileFaceNet 深度学习 卷积神经网络 深度可分离卷积 face recognition MobileFaceNet deep learning convolutional neural network depthwise separable convolution
  • 相关文献

参考文献2

共引文献133

同被引文献36

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部