期刊文献+

基于点云配准的多固态激光雷达标定算法 被引量:3

Calibration Algorithm of Multi Solid-state Lidar Based on Pointcloud Registration
下载PDF
导出
摘要 针对多个固态激光雷达协同工作时,需要准确地进行外参标定的实际需求,提出一种基于点云配准的多固态激光雷达自动标定算法。该标定算法由标定物分割、初始配准和精确配准三个阶段构成。在标定物分割阶段,首先通过叠加多帧非重复扫描数据制作标定点云,再使用半径滤波和体素下采样滤波分割出纹理特征明显的目标点云。在初始配准阶段,使用3D-HARRIS算法提取关键点,并使用方向直方图(SHOT)特征描述子进行特征描述,然后匹配对应点并使用采样一致算法完成初始配准;在精配准阶段使用迭代最近邻(ICP)算法进行精确配准,从而获得精确的外参标定效果。在Bunny兔数据集和现场获得的数据上进行实验,结果表明,当保证配准平均误差小于1 mm的前提下,所提出算法的性能优于多种现有算法。 Aiming at the practical requirement of accurately calibrating external parameters of multiple solid-state lidars,a multi-solid-state lidar automatic calibration algorithm based on point cloud registration is proposed.The calibration algorithm consists of three stages:calibration object segmentation,initial registration and precise registration.In the target segmentation stage,a calibration point cloud is made by superimposing multiple frames of non-repetitive scan data,and then radius filtering and voxel down-sampling filtering are used to segment the target point cloud with obvious texture characteristics.In the initial registration stage,key points are extracted by 3 D-HARRIS algorithm,and then key points are described by the signature of histogram of orientation(SHOT)feature descriptor,then the sampling consensus algorithm is performed to calculate the corresponding points and complete the initial registration.In the fine registration stage,the iterative closest point(ICP)algorithm performs precise registration to obtain precise external parameter calibration effects.Experiments are conducted on the Bunny rabbit dataset and the data obtained on site.The results show that the performance of the proposed algorithm is better than many existing algorithms under the premise that the average registration error is less than 1 mm.
作者 何彦兵 叶宾 李会军 周欣怡 HE Yanbing;YE Bin;LI Huijun;ZHOU Xinyi(School of Information and Control Engin.,China University of Mining and Technol.,Xuzhou 221116,CHN;Engineering Research Center of Intelligent Control for Underground Space of the Ministry of Education,Xuzhou 221116,CHN)
出处 《半导体光电》 CAS 北大核心 2022年第1期195-200,共6页 Semiconductor Optoelectronics
基金 国家重点研发计划项目(2020YFB1314102)。
关键词 外参标定 点云配准 固态激光雷达 描述子 external parameter calibration point cloud registration solid-state LiDAR descriptor
  • 相关文献

参考文献4

二级参考文献31

  • 1尚涛,贺会超,王昕,宫文斌,戴永强.二维激光雷达实现三维成像的算法[J].吉林大学学报(工学版),2012,42(S1):91-95. 被引量:5
  • 2项志宇.快速三维扫描激光雷达的设计及其系统标定[J].浙江大学学报(工学版),2006,40(12):2130-2133. 被引量:25
  • 3Hacene A, Mekki A. Bio-CAD reverse engineering of free- form surfaces by planar contours [J]. Computer-Aid Design - Applications, 2011, 8 (1): 37-42.
  • 4Senin N, Colosimo BM, PaceUa M. Point set augmentation through fitting for enhanced ICP registration of point clouds in multisensor coordinate metro[ogy [J]. Robotics and Computer- Integrated Manufacturing, 2013, 29 (1).. 39-52.
  • 5DUN WZ, HUN G, HOiX LX, et ak The research of optical 3D measuring precision influeacing factor in reverse engineering [J].Applied Mechanics an Materials, 2010, 33: 157-162.
  • 6DU SY, ZHENG NN, YING SH, et al. Affine iterative clo- sest point algorithm for point set registration [J ]. Pattern Recognition Letters, 2010, 31 (9): 791-799.
  • 7LAURA EW, JOHN FP. A bounding box search algorithm for DEM simulation [J]. Computer Physics Communications, 2011, 182 (2): 281-288.
  • 8PcL点云库官网.点云数据[EB/OL].[2014-10-06].http://www.point-doudorg/.
  • 9袁建英,刘先勇,刘伟,郭进.改进ICP算法实现多视点云精确配准研究[J].传感器与微系统,2008,27(5):27-30. 被引量:16
  • 10杨现辉,王惠南.ICP算法在3D点云配准中的应用研究[J].计算机仿真,2010,27(8):235-238. 被引量:91

共引文献44

同被引文献29

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部