期刊文献+

面向空间平台的小型化量子纠缠源 被引量:2

Compact Quantum Entangled-Photon Source for Space Platform
原文传递
导出
摘要 随着量子信息科学的迅速发展,以光子为物理载体的量子纠缠源已成为量子非定域性检验、量子通信、量子计算以及量子精密测量等领域必不可少的资源和重要技术手段。利用非线性介质中的自发参量下转换过程,从早期的β相偏硼酸钡晶体到后来的基于准相位匹配的周期性极化晶体等,双光子极化纠缠源凭借其在亮度和品质方面的优势得到了快速发展,这为基于卫星平台的广域量子通信和量子物理的基础检验提供了可能。从基本原理出发,系统介绍了近年来面向空间平台应用的量子纠缠源的发展和最新成果,特别是以“墨子号”量子科学实验卫星为代表的星载量子纠缠源载荷;此外,对国际上近几年关于星载量子纠缠源的进展以及未来发展趋势也进行了较为全面的介绍和分析。 With the rapid development of quantum information science,quantum entangled-photon source has become an important resource for quantum nonlocality test,quantum communication,quantum computing,and quantum metrology.Using spontaneous parametric down-conversion process in a nonlinear medium,polarized two-photon entanglement sources have been rapidly developed in terms of brightness and quality.From the early bulk crystal ofβ-barium borate to the later periodically poled crystal based on quasi-phase-matching,the brightness of the entanglement source has been increased,providing the possibility of large-scale quantum communication and fundamental test of quantum physics with satellites.Here we systematically introduce the development and latest achievements of quantum entangled-photon sources for space platform application in recent years,especially the spaceborne entangled-photon source represented by the Micius quantum science satellite.In addition,the international progress and future trend of satellite-based quantum entanglement source in recent years are also introduced and analyzed.
作者 周晓妍 李波 李宇怀 曹原 印娟 彭承志 Zhou Xiaoyan;Li Bo;LiYuhuai;CaoYuan;Yin Juan;Peng Chengzhi(University of Science and Technology of China,Hefei,Anhui 230026,China;CAS Center for Excellence in Quantum Information and Quantum Physics,Shanghai 201315,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2022年第3期129-141,共13页 Acta Optica Sinica
基金 国家自然科学基金(11822409,U1738201) 安徽省自然科学基金(1808085J18)。
关键词 量子光学 量子通信 量子纠缠 量子密钥分发 量子纠缠分发 量子隐形传态 quantum optics quantum communication quantum entanglement quantum key distribution quantum entanglement distribution quantum teleportation
  • 相关文献

参考文献3

二级参考文献19

  • 1杨涛,潘建伟.量子信息技术的新进展——五光子纠缠和开放目的的量子隐形传态[J].中国科学院院刊,2004,19(5):355-358. 被引量:73
  • 2Aspelmeyer M, Bohm H R, Gyatso T, Jennewein T, Kahenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Resch K, Taraba M, Ursin R, Wahher P, Zeilinger A 2003 Science 301 621.
  • 3Peng C Z, YangT, Bao X H, Zhang J, Jin X M, Feng F Y, Yang B, Yang J, Yin J, Zhang Q, Li N, Tian B L, Pan J W 2005 Phys. Rev. Lett. 94 150501.
  • 4Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, Omer B, Farst M, Meyenburg M, Rarity J, Sodnik Z, Narbieri C, Weinfurter H, Zeilinger A 2007 Nat. Phys. 3 481.
  • 5Fedrizzi A, Ursin R, Herbst T, Nespoli M, Prevedel R, Scheidl T, Tiefenbacher F, Jennewein T, Zeilinger A 2009 Nat. Phys. 5 389.
  • 6Ursin R, Jennewein T, Kofler J, Perdigues J, Cacciapuoti L, Matos C J, Aspelmeyer M, Valencia A, Scheidl T, Fedrlzzi A, Acin A, Barbieri C, Bianco G, Brukner C, Capmany J, Cova S, Giggenbach D, Leeb W, Hadfield R H, Laflamme R, Lutkenhaus N, Milburn G, Peev M, Ralph T, Rarity J, Renner R, Samain E, Solomos N, Tittel W, Torres J P, Toyoshima M,Ortigosa-Blanch A, Pruneri V, Villoresi P, Walmsley I, Weihs G,.Weinfurter H, Zukowski M, Zeilinger A 2009 Europhys. News 40 26.
  • 7Pfennigbauer M, Aspelmeyer M, Leeb W, Baister G, Dreischer T, Jennewein T, Neckamm G, Perdigues J, Weinfurter H, Zeilinger A 2005 J. Opt. Commun. Netw. 4 549.
  • 8Bonato C, Tomaello A, Deppo V D, Naletto G, Villoresi P 2009 New J. Phys. 11 045017.
  • 9Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777.
  • 10Bell J S 1964 Physics 1 195.

共引文献81

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部