期刊文献+

基于自适应空间特征融合的轻量化目标检测算法 被引量:14

Lightweight Target Detection Algorithm Based on Adaptive Spatial Feature Fusion
原文传递
导出
摘要 针对目前深度学习中单阶段目标检测网络结构复杂、训练困难与在移动与嵌入式设备难以部署的问题,提出了一种基于自适应空间特征融合的轻量化目标检测算法。所提算法以YOLOv4为网络基础框架,采用轻量级MobileNet作为特征提取网络,降低网络深度与训练难度,提高检测速度;采用一种自适应空间特征融合(ASFF)方式改进PANet对多尺度特征融合效果差的不足;通过增加网络的输出维度,利用Gaussian算法对新增维度建模并输出预测框位置的不确定性;最后对位置损失函数进行重新定义,提高位置回归的准确性。所提算法以疫情期间口罩佩戴检测机器人为部署载体,对人脸口罩佩戴情况进行了测试,实验结果表明,所提算法的检测精度达到了95.92%,检测速度达到了19 frame/s,相比于原始算法和其他主流检测算法,更适合部署于移动与嵌入设备实现实时检测。 Aiming at the problems of complex network structure, difficult training and difficult deployment in mobile,and embedded devices of single-stage target detection in deep learning, a lightweight target detection algorithm based on adaptive spatial feature fusion is proposed. The proposed algorithm takes YOLOv4 as the basic framework of the network and uses lightweight MobileNet as the feature extraction network to reduce the network depth and training difficulty and improve the detection speed;an adaptive spatial feature fusion(ASFF) method is used to improve the poor effect of PANet on multi-scale feature fusion;by adding the output dimension of the network, the Gaussian algorithm is used to model the new dimension and output the uncertainty of the position of the prediction box;finally,the position loss function is redefined to improve the accuracy of position regression. The proposed algorithm takes the mask wearing detection robot during the epidemic as the deployment carrier to test the face mask wearing. The experimental results show that the detection accuracy of the proposed algorithm reaches 95. 92% and the detection speed reaches 19 frame/s. Compared with the original algorithm and other mainstream detection algorithms, the proposed algorithm is more suitable for deployment in mobile and embedded devices to realize real-time detection.
作者 罗禹杰 张剑 陈亮 张侣 欧阳婉卿 黄代琴 杨羽翼 Luo Yujie;Zhang Jian;Chen Liang;Zhang Lü;Ouyang Wanqing;Huang Daiqin;Yang Yuyi(School of Information and Electrical Engineering,Hunan University of Science and Technology,Xiangtan,Hunan 411100,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第4期302-312,共11页 Laser & Optoelectronics Progress
基金 国家自然科学基金项目(61972443) 湖南省自然科学基金(2020JJ5170) 湖南省教育厅一般项目(180C0299)。
关键词 机器视觉 模式识别 特征提取网络 特征融合 损失函数 machine vision pattern recognition feature extraction network feature fusion loss function
  • 相关文献

参考文献5

二级参考文献32

共引文献242

同被引文献136

引证文献14

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部