期刊文献+

Improving accuracy of automatic optical inspection with machine learning

原文传递
导出
摘要 Electronic devices require the printed circuit board(PCB)to support the whole structure,but the assembly of PCBs suffers from welding problem of the electronic components such as surface mounted devices(SMDs)resistors.The automated optical inspection(AOI)machine,widely used in industrial production,can take the image of PCBs and examine the welding issue.However,the AOI machine could commit false negative errors and dedicated technicians have to be employed to pick out those misjudged PCBs.This paper proposes a machine learning based method to improve the accuracy of AOI.In particular,we propose an adjacent pixel RGB value based method to pre-process the image from the AOI machine and build a customized deep learning model to classify the image.We present a practical scheme including two machine learning procedures to mitigate AOI errors.We conduct experiments with the real dataset from a production line for three months,the experimental results show that our method can reduce the rate of misjudgment from 0.3%–0.5%to 0.02%–0.03%,which is meaningful for thousands of PCBs each containing thousands of electronic components in practice.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第1期45-56,共12页 中国计算机科学前沿(英文版)
基金 The work was supported by National Key Research and Development Program of China(2020YFB1708700) the National Natural Science Foundation of China(Grant Nos.61922055,61872233,61829201,61532012,61325012,61428205).
  • 相关文献

参考文献2

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部