期刊文献+

一种大场景SAR图像中舰船检测虚警抑制方法 被引量:4

A False Alarm Suppression Method for Ship Detection in Large-scene SAR Image
下载PDF
导出
摘要 针对进行实际大场景合成孔径雷达(SAR)图像舰船检测时容易出现众多陆地上的虚警问题,文中提出一种基于纯背景混合训练的方法来抑制大场景SAR舰船检测的虚警。该方法的核心是将不含有舰船的图像样本(纯背景样本)也输入到网络中进行训练,使网络能够学习纯背景样本特征,最终实现陆地上一些与舰船相似度高的强散射亮点的虚警抑制。由于现有公开的数据集缺少纯背景图像样本,为了便于验证该方法的有效性,文中还组建了由10幅Sentinel-1大场景SAR图像组成的纯背景混合训练SAR舰船检测数据集。在该数据集上,两种单阶段检测器(RetinaNet和SSD)和两种双阶段检测器(Faster R-CNN和Cascade R-CNN)的实验对比结果表明纯背景混合训练可以有效抑制大场景SAR图像中舰船检测的虚警。 In order to solve the problem that many land false alsrms accur in large-scene SAR images ship detection,a method is proposed based on pure background hybrid training to suppress false alarms of large-scene SAR ship detection.The core of this method is to input the image samples without ships(pure background samples)into networks for training,so as to learn the features of pure background samples,and finally realize the false alarm suppression of some strong scattering bright spots on land with high similarity to ships.Due to the lack of pure background image samples in existing public dataset,to verify the effectiveness of this method,a pure background hybrid training SAR ship detection dataset that consists of 10 Sentinel-1 large-scene SAR images is also constructed.The experimental results of two kinds of one-stage detectors(Retinanet and SSD)and two kinds of two-stage detectors(Fast R-CNN and Cascade R-CNN)on this dataset show that pure background hybrid training can effectively suppress the false alarms of ship detection in large-scene SAR images.
作者 张天文 张晓玲 ZHANG Tianwen;ZHANG Xiaoling(School of Information and Communication Technology,University of Electronic Science and Technology of China)
出处 《现代雷达》 CSCD 北大核心 2022年第2期1-8,共8页 Modern Radar
基金 国家自然科学基金资助项目(61571099)。
关键词 合成孔径雷达舰船检测 虚警抑制 大场景 深度学习 纯背景混合训练 synthetic aperture radar ship detection false alarm suppression large-scene deep learning pure background hybrid training
  • 相关文献

参考文献8

二级参考文献61

  • 1高祥武,黄广民,杨汝良.机载SAR目标快速定位方法和定位精度分析[J].现代雷达,2004,26(9):4-7. 被引量:23
  • 2付信际,杨汝良,岳海霞.基于Markov随机场的SAR图像目标检测方法[J].现代雷达,2007,29(5):55-58. 被引量:2
  • 3张风丽,张磊,吴炳方.欧盟船舶遥感探测技术与系统研究的进展[J].遥感学报,2007,11(4):552-562. 被引量:24
  • 4Moreira A, et al.. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6-43.
  • 5Ouchi K. Recent trend and advance of synthetic aperture radar with selected topics[J]. Remote Sensing, 2013, 5(2): 716-807.
  • 6Colinas J, Seguin G, and Plourde P. Radarsat constellation, moving toward implementation[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 3232-3235.
  • 7Suess M, Grafmueller B, and Zahn R. A novel high resolution, wide swath SAR system[C]. IEEE International Geoscience and Remote Sensing Symposium, Sydney, 2001, 3: 1013-1015.
  • 8Li Zhe-fang, Wang Hong-yang, Su Tao, et al.. Generation of wide-swath and high-resoulution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82-86.
  • 9Krieger G, et al.. Advanced concepts for high-resolution wide-swath SAR imaging[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 524-527.
  • 10Vachon P W. Validation of ship detection by the RADARSAT synthetic aperture radar and the ocean monitoring workstation[J]. Canadian Journal of Remote Sensing, 2000, 26(3): 200-212.

共引文献191

同被引文献22

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部