期刊文献+

The transport and retention of CQDs-doped TiO_(2) in packed columns and 3D printed micromodels

原文传递
导出
摘要 CQDs-doped TiO_(2)(C-TiO_(2))has drawn increased attention in recent because of its excellent catalytic performance.Understanding the transport of C-TiO_(2)in porous media is necessary for evaluating the environmental process of this new nanomaterial.Column experiments were used in this study to investigate ionic strength(IS),dissolved organic matter(DOM)and sand grain size on the transport of C-TiO_(2).The mobility of C-TiO_(2)was inhibited by the increased IS and decreased sand grain size,but was promoted by the increased DOM concentration.The promotion efficiency of DOM ranked as humic acid(HA)>alginate(Alg)>bovine serum albumin(BSA),which was in the same order as their ability to change surface charges.The micromodels of pore network were prepared via 3D printing to further reveal the deposition mechanisms and spatial/temporal distribution of C-TiO_(2)in porous space.C-TiO_(2)mainly attached to the upstream region of collectors because of interception.The collector ripening was observed after long-time deposition.The existence of DOM caused visible decrease of C-TiO_(2)deposition in the pore network.HA caused the most remarkable reduce of deposition in the three types of DOM,which was consistent with the column experiment results.This research is helpful to predict the transport of C-TiO_(2)in natural porous media.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第3期365-375,共11页 环境科学学报(英文版)
基金 This work was supported by the National Natural Science Foundation of China(No.41773110) the National Natural Science Foundation of China-Shandong Joint Fund(No.U2006214) the Shenzhen Science and Technology Research and Development Funds,China(No.JCYJ20180301171357901).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部