期刊文献+

四氮烯衍生物合成研究进展 被引量:1

Research progress in synthesis of tetrazene derivatives
下载PDF
导出
摘要 四氮烯作为一种高生成焓、分解产物清洁无污染的氮链结构单元,衍生物在航空航天、武器装备等领域具有广阔的应用前景。为了促进该领域的发展,综述了已知的2种四氮烯结构单元成键构筑策略:肼类氧化二聚法和叠氮负离子/锂盐法。肼类氧化法作为构筑四氮烯结构单元的主要方法,根据取代类型主要分为烷烃(包括链烷烃、环烷烃)和N-杂环取代两大类,并以此分类系统介绍了该领域合成研究进展及理化爆轰性能。截止目前,该领域合成方法均为传统化学氧化方法,有关光催化及电化学氧化的研究亟待加强。 As a functional nitrogen chain group,tetrazene derivatives possess high enthalpy of formation and decomposition products environment friendly,which have a promising application in aerospace,munitions manufacturing,etc.In order to promote the development of this field,two bond formation strategies for tetrazene structural units,mainly including oxidative dimerization from hydrazines and azide anion/lithium method,were systematically summarized.The hydrazine oxidative dimerization is the dominating method for the construction of tetrazene units.According to the substituent types of tetrazene derivatives,the synthesis research progress was classified into two parts:alkyl(including chain-alkyl,cycloalkyl)and N-heterocyclic substituted tetrazenes.The physicochemical and detonation properties of tetrazene derivatives were emphasized.Up to now,the synthetic methods in this field are traditional chemical oxidation,and the research of photocatalytic and electrochemical oxidation needed to be strengthened urgently.
作者 汪琨凯 李祥志 杨凯迪 罗义芬 霍欢 王伯周 毕福强 WANG Kunkai;LI Xiangzhi;YANG Kaidi;LUO Yifen;HUO Huan;WANG Bozhou;BI Fuqiang(Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an 710065, China)
出处 《兵器装备工程学报》 CSCD 北大核心 2022年第3期1-10,共10页 Journal of Ordnance Equipment Engineering
基金 国家自然科学基金项目(21805224)。
关键词 四氮烯结构单元 构筑方法 四氮烯衍生物 合成 应用 爆轰性能 tetrazene structural unit synthetic methods tetrazene derivatives synthesis applications detonation performance
  • 相关文献

参考文献3

二级参考文献43

  • 1[1](a) J.G.Haasnoot,Coord.Chem.Rev.200 (2000) 131;(b)L.Yi,D.Ding,B.Zhao,et al.Inorg.Chem.43 (2004) 33.
  • 2[2]S.Ferrer,F.Lloret,L.Bertomeu,et al.Inorg.Chem.41 (2002) 5821.
  • 3[3]M.Pellei,F.Benetollo,G.G.Lobbia,et al.Inorg.Chem.44 (2005) 846.
  • 4[4]J.H.Zhou,R.M.Cheng,Y.Song,Inorg.Chem.44 (2005) 8011.
  • 5[5](a) H.Xue,Y.Gao,B.Twamley,et al.Chem.Mater.17 (2005) 191;(b) H.Xue,Y.Gao,B.Twamley,et al.Inorg.Chem.44 (2005) 5068.
  • 6[6](a) H.Xue,B.Twamley,J.M.Shreeve,et al.Inorg.Chem.44 (2005) 7009;(b) H.Xue,H.X.Gao,B.Twamley,et al.Chem.Mater.19 (2007) 1731;(c)H.Xue,B.Twamley,J.M.Shreeve,et al.J.Mater.Chem.15 (2005) 3459.
  • 7[7]J.C.Bottaro,US 5,889,161 (1999).
  • 8[8]D.L.Naud,M.A.Hiskey,H.H.Harry,et al.J.Energ.Mater.21 (2003) 57.
  • 9[9]K.Y.Lee,C.B.Storm,M.A.Hiskey,et al.J.Energ.Mater.9 (1991) 415.
  • 10[10]R.L.Simpson,A.R.Pagoria,A.R.Mitchell,et al.Propell.Explos.Pyrotech.19 (1994) 174.

共引文献17

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部