期刊文献+

改进DCGAN的飞机蒙皮图像生成方法 被引量:3

Aircraft skin image generation method of improved DCGAN
下载PDF
导出
摘要 针对传统深度卷积生成对抗网络(DCGAN)在生成飞机蒙皮图像中存在图像质量差和训练不稳定的问题,提出了一种改进的生成器网络。利用ResNet残差模块改进了DCGAN生成器与判别器结构,以解决因网络加深和图像尺寸增大导致的生成图像质量差的问题;采用Wasserstein距离作为新的损失函数,以增强网络的训练稳定性。试验表明,改进后的模型训练稳定性得到增强,生成的飞机蒙皮图像的SMD值提升了30.6%,Tenengrad梯度值提升了41.5%,Laplacian梯度值提升了13.4%。 Aiming at the problems of poor image quality and unstable training in the generation of aircraft skin images by traditional deep convolution generated adversarial network(DCGAN),an improved generator network was proposed.The structure of DCGAN generator and discriminator was improved by using ResNet module to solve the problem of poor image quality caused by deepening network and increasing image size.Wasserstein distance was used as a new loss function to enhance the training stability of the network.Experimental results show that the training stability of the improved model is enhanced,and the SMD value of the generated aircraft skin image is improved by 30.6%,Tenengrad value is improved by 41.5%,and Laplacian value is improved by 13.4%.
作者 张静 农昌瑞 杨智勇 刘镇毓 曾庆松 ZHANG Jing;NONG Changrui;YANG Zhiyong;LIU Zhenyu;ZENG Qingsong(Naval Aviation University, Yantai 264001, China;Yantai Institute of Technology, Yantai 264001, China)
出处 《兵器装备工程学报》 CSCD 北大核心 2022年第3期286-292,共7页 Journal of Ordnance Equipment Engineering
基金 国家自然科学基金项目(61701519)。
关键词 飞机蒙皮 故障检测 深度卷积生成对抗网络 残差网络 图像生成 aircraft skin fault detection deep convolution generation adversarial network residual network image generation
  • 相关文献

参考文献9

二级参考文献46

共引文献81

同被引文献32

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部