期刊文献+

矿井带式输送机运行故障检测方法研究与应用 被引量:3

Research and application of fault detection method for mine belt conveyor
下载PDF
导出
摘要 以陆成煤业DTL100/50/132型带式输送机为例,提出了一种基于音频小波包分解和卷积神经网络(CNN)的智能故障诊断方法。采用小波包分解算法将故障的音频数据分解为多个频段,利用CNN对每个频带的特征进行分类,诊断带式输送机故障。实验结果表明,该诊断方法具有准确率高、速度快、可靠性强等特点,提高了带式输送机的故障诊断效率。 Taking DTL100/50/132 belt conveyor in Lucheng Coal Industry as an example,an intelligent fault diagnosis method based on audio wavelet packet decomposition and convolutional neural network(CNN)is proposed.The wavelet packet decomposition algorithm is used to decompose the fault audio data into multiple frequency bands,and CNN is used to classify the characteristics of each frequency band to diagnose the fault of belt conveyor.The experimental results show that the diagnosis method has the characteristics of high accuracy,fast speed and strong reliability,and improves the efficiency of fault diagnosis of belt conveyor.
作者 王新成 Wang Xincheng(Shanxi Coal Import and Export Group Hongdong Land Coal Industry Co.,Ltd.,Linfen 041600,China)
出处 《煤炭与化工》 CAS 2022年第3期102-104,共3页 Coal and Chemical Industry
关键词 带式输送机 音频监测 故障检测 belt conveyor audio monitoring fault detection
  • 相关文献

参考文献5

二级参考文献34

  • 1颜廷虎,钟秉林,黄仁.BP神经网络在旋转机械故障诊断中的应用[J].东南大学学报(自然科学版),1993,23(5):16-20. 被引量:11
  • 2黄民,魏任之.矿用钢绳芯带式输送机实时工况监测与故障诊断技术[J].煤炭学报,2005,30(2):245-250. 被引量:62
  • 3张田,尹智雄,张学燕.采煤机故障报警与诊断决策支持系统的设计分析[J].煤矿机械,2006,27(3):528-530. 被引量:6
  • 4梁武科,赵道利,马薇,王荣荣,南海鹏,罗兴锜.基于粗糙集-RBF神经网络的水电机组故障诊断[J].仪器仪表学报,2007,28(10):1806-1810. 被引量:32
  • 5ROGER BOUSTANY,JEROME ANTONI.A subspace method for the blind extraction of a cyclostationary source:Application to rolling element bearing diagnosis[J].Mechanical Systems and Signal Processing,2005,19:1245-1259.
  • 6VICTOR GIRONDIN,KOMI MIDZODZI PEKPEL.Bearings fault detection in helicopters using frequency readjustment and cyclostationary analysis[J].Mechanical Systems and Signal Processing,2013,38:449-514.
  • 7WIGGINS R A.Minimum entropy deconvolution[J].Geoexploration,1978,16:21-35.
  • 8DONOHO D.On minimum entropy deconvolution[J].Appl.Time Ser.Analysis II,1981:565-609.
  • 9Endo H,Randall R B.Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter[J].MECH SYST SIGNAL PR,2007,21:906-919.
  • 10SAWALHI N,RANDALL R B,ENDO H.The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J].MECH SYST SIGNAL PR,2007,21:2616-2633.

共引文献36

同被引文献17

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部