摘要
SF_(6)/N_(2)混气能有效克服SF_(6)气体低温液化及环保问题而在电力工业领域广泛应用,基于SF_(6)/N_(2)混气分解产物的化学检测对高压电气设备潜伏性故障诊断意义重大。针对不同比例的SF_(6)/N_(2)混气背景对分解产物检测带来偏差问题,在高斯矩阵去交叉算法基础上,采用动态修正算法,实现一台SF_(6)分解产物分析仪动态检测不同比例SF_(6)/N_(2)混气背景中分解产物含量。实验结果显示动态修正算法植入电化学传感器前后的气体最大示值误差由原来的50%降低至10%以下,可满足对高压电器设备SF_(6)/N_(2)绝缘介质中分解产物的准确检测,实现高压电器设备健康状态监测和故障预判。
SF_(6)/N_(2)mixed gas which is widely used in the field of power industry can effectively overcome the problems of low temperature liquefaction and environmental protection of SF_(6) gas.The chemical detection based on SF_(6)/N_(2)mixed gas decomposition products is of great significance to the diagnosis of latent faults in high-voltage electrical equipment.In view of the deviation caused by different proportions of SF_(6)/N_(2)gas mixing background to the detection of decomposition products,a dynamic correction algorithm is adopted to implement a SF_(6) decomposition product analyzer based on the Gaussian matrix de-crossing interference algorithm to dynamically detect the contents of decomposition products in different proportions of SF_(6)/N_(2)gas mixing background.The experimental results show that the maximum error of gas indication value before and after the dynamic correction algorithm is implanted into the electrochemical sensor is reduced from 50%to less than 10%,which can satisfy the accurate detection of decomposition products in the SF_(6)/N_(2)insulating medium of high voltage electrical equipment,and realize the health status monitoring and fault prediction of high voltage electrical equipment.
作者
楚东月
齐汝宾
李新田
赫树开
曾晓哲
王幸辉
侯新梅
CHU Dongyue;QI Rubin;LI Xintian;HE Shukai;ZENG Xiaozhe;WANG Xinghui;HOU Xinmei(Henan Relations Co.,Ltd.,Zhengzhou 450001,China;School of Electrical and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China)
出处
《电工技术》
2022年第5期175-177,共3页
Electric Engineering
基金
“智汇郑州·1125聚才计划”创新领军人才项目。