摘要
The two-dimensional(2D) materials with nodal line band crossing have been attracting great research interest. However, it remains a challenge to find high-stable nodal line structure in 2D systems. Herein, based on the first-principles calculations and theoretical analysis, we propose that monolayer B_(6)O possesses symmetry protected Dirac nodal line(DNL)state, with its Fermi velocity of 10^(6)m/s in the same order of magnitude as that of graphene. The origin of DNL fermions is induced by coexistence of time-reversal symmetry and inversion symmetry. A two-band tight-binding model is further given to understand the mechanism of DNL. Considering its robustness against spin–orbit coupling(SOC) and high structural stability, these results suggest monolayer B_(6)O as a new platform for realizing future high-speed low-dissipation devices.
基金
Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939)
Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043)
the National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200)。