期刊文献+

针对锋电位的启发式阈值检测算法 被引量:1

Heuristic Threshold Detection Algorithm for Spike
下载PDF
导出
摘要 作为植入式脑电信号处理的关键环节,锋电位检测的精确度将直接影响后续脑电信号的解码与分析。提出了一种基于启发式阈值的锋电位自动检测算法。通过对椭圆滤波器参数的优化,降低了原始信号中有用信号衰减程度,实现了较低幅值锋电位的有效保留。并且启发式阈值的设定大大降低了采集环境引入的混杂噪声干扰,实现了具有鲁棒性的锋电位自动阈值检测。基于英国莱斯特大学神经工程实验室提供的细胞外模拟记录数据的实验验证表明,在多种信噪比下提出的算法的平均检测精度可达65.21%。此外,基于猕猴肢体伸展抓握运动范式下采集的植入式脑电数据的实验的结果表明,即使在不确定背景噪声的真实环境中,该算法仍可有效地用于锋电位信号的检测。 Spike detection is the basis of signal processing with implantable brain machine interface system and its detection accuracy affects the accuracy of signal decoding and analysis. An automatic detection algorithm for spikes is proposed.Firstly, elliptic filter parameters are optimized to reduce the attenuation degree of useful signals, so as to retain spikes with low amplitude in the original signals. Then the heuristic threshold formula is used to effectively reduce the mixed noise interference introduced in the complex acquisition environment and realize automatic spike threshold detection.The algorithm is tested on synthetic extracellular records developed at the Neuro-Engineering Lab at the University of Leicester, UK, and shows an average detection accuracy of 65.21% for a variety of SNRS. In addition, spike thresholds are detected in implantable electroencephalogram data collected from the rhesus monkeys’ extended-limb grasping movement paradigm. Experimental results show that the proposed spike detection algorithm can be used to extract spike signals from real data of uncertain background noise.
作者 王洁 郭天翔 卢云山 赵冰 熊鹏 杜海曼 WANG Jie;GUO Tianxiang;LU Yunshan;ZHAO Bing;XIONG Peng;DU Haiman(College of Electronic and Information Engineering,Hebei University,Baoding,Hebei 071000,China;Contec Medical Systems Co.,Ltd.,Qinhuangdao,Hebei 066004,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第7期192-196,共5页 Computer Engineering and Applications
基金 河北省自然科学基金(F2018201070)。
关键词 锋电位检测 低幅值 启发式阈值 不确定背景噪声 spike detection low amplitude heuristic threshold uncertain background noise
  • 相关文献

参考文献2

二级参考文献5

共引文献6

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部