期刊文献+

基于改进压缩背景码书模型的运动目标检测方法

Moving Target Detection Method Based on Improved Compressed Background Codebook Model
下载PDF
导出
摘要 运动目标检测是视频监控系统中的关键技术步骤。传统算法一般通过视频序列中像素分布的时空域特点进行判断,对亮度变化和阴影的鲁棒性较差。提出了一种基于改进压缩背景码书模型的运动目标检测方法,提出了一种改进色彩偏差和亮度差异阈值的检测策略,并采用形态学处理去除不规则和较小面积误检测的影响,对外界光线变化具有更强的鲁棒性。仿真实验表明,此算法在暗/亮区域目标检测中更具合理性,证明了算法的有效性。 Moving target detection is a key technical step in video monitoring systems.Traditional algorithms usually judge by the temporal and spatial characteristics of pixel distribution in video sequence,which has poor robustness in brightness change and shadow.A moving object detection method based on improved compressed background codebook(CB)model is proposed,and an improved color deviation and brightness difference threshold detection strategy is adopted in this method,which uses an erosion strategy to remove the effects of irregular and smaller areas’detection error after the moving object map is obtained,showing greater robustness in external light change.The proposed algorithm can be applied to several video sequences.The simulation experiment results prove that the proposed algorithmrealizes its rationality and effectiveness especially in dark/bright areas.
作者 段继华 郝铎 刘华宇 卢梦思 DUAN Jihua;HAO Duo;LIU Huayu;LU Mengsi(The 54th Research Institute of CETC,Shijiazhuang 050081,China;North China Institute of Aerospace Engineering,Langfang 065000,China)
出处 《计算机与网络》 2022年第5期59-62,共4页 Computer & Network
关键词 压缩背景码书模型 运动目标检测 色彩偏差 亮度差异阈值 compressed background codebook model moving target detection color deviation brightness difference threshold
  • 相关文献

参考文献3

二级参考文献52

  • 1Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 2Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 3Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 4Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 5Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 6Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 7Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 8Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.
  • 9Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking[A].In:Proceedings of European Conference on Computer Vision[C],Dublin,Ireland,2000,2:336 ~ 350.
  • 10Stenger B,Ramesh V,Paragios N,et al.Topology free hidden markov models:Application to background modeling[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001,1:294 ~301.

共引文献232

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部