摘要
文章提出一种两阶段二次判别分析建模方法,该方法将高维协方差阵的估计转化为低维矩阵的估计问题,从而有效解决了超高维二次判别分析计算量大的问题。数值模拟和实际数据分析结果表明,在有限样本情形下,两阶段估计方法在变量选择和分类误差率方面的性能更好。
This paper proposes a modeling method for two-stage quadratic discriminant analysis, which transforms the estimation of high-dimensional covariance matrix into the estimation of low-dimensional matrix, thus effectively solving the problem of large computation of super-high-dimensional quadratic discriminant analysis. The results of numerical simulation and actual data analysis show that the two-stage estimation method has better performance in variable selection and classification error rate under finite samples.
作者
高妍南
周生彬
黄叶金
白世贞
Gao Yannan;Zhou Shengbin;Huang Yejin;Bai Shizhen(College of Electronic and Information Engineering,Guangdong Ocean University;School of Information Engineering,Lingnan Normal University,Zhanjiang Guangdong 524048,China;China Securities Data Co.,Ltd.,Beijing 100032,China;Postdoctoral Station of Business Administration,Harbin University of Commerce,Harbin 150028,China)
出处
《统计与决策》
CSSCI
北大核心
2022年第6期9-14,共6页
Statistics & Decision
基金
国家自然科学基金资助项目(71671054)。
关键词
二次判别分析
超高维
稀疏性
精度矩阵
两阶段估计
quadratic discriminant analysis
ultrahigh dimension
sparsity
precision matrix
two-stage estimation