期刊文献+

科技政策效果评价及其发展趋势 被引量:4

Evaluation of the Effect of Science and Technology Policy and Its Development Trend
下载PDF
导出
摘要 科技政策作为提高科技竞争力的重要手段,正为世界各国所关注,科技政策效果评价成为当前包括情报学在内的多学科的重要研究内容。科技政策效果评价有以计算效益为重点、以结果为重点和以内容为重点等流派,以及面向经济影响的评价方法、基于反事实的因果推断方法和智能化定量分析方法等方法。效果评价将成为未来科技政策评价的核心,采纳自动化的评价方法、充分运用大数据资源、扩展评价信息来源以及开发新的评价指标等将是科技政策效果评价的主要发展方向。 Science and technology policy,as an important means to improve science and technology competitiveness,has attracted unprecedented attention of countries all over the world.The effect evaluation of science and technology policy has become an important research content of many disciplines,including information science.This paper summarizes the main schools and mainstream methods of science and technology policy effect evaluation,and analyzes the development trends of science and technology policy effect evaluation.Meanwhile,the paper holds that effect evaluation will become the core of science and technology policy evaluation in the future,and adopting automatic evaluation methods,making full use of big data resources,expanding evaluation information sources and developing new evaluation indicators will be the main development direction of science and technology policy effect evaluation.
作者 陈瑜 李广建 Chen Yu;Li Guangjian
出处 《图书与情报》 CSSCI 北大核心 2021年第6期96-106,共11页 Library & Information
基金 国家社会科学基金重大项目“大数据时代知识融合的体系架构、实现模式及实证研究”(项目编号:15ZDB129)研究成果之一。
关键词 科技政策 政策效果评价 智能化定量分析 发展趋势 science and technology policy policy effect evaluation intelligent quantitative analysis developing trend
  • 相关文献

参考文献5

二级参考文献114

  • 1欧文.E.休斯.公共管理导论[J].领导决策信息,2002,0(15):4-15. 被引量:29
  • 2秦春秀,赵捧未,刘怀亮.词语相似度计算研究[J].情报理论与实践,2007,30(1):105-108. 被引量:30
  • 3Deerwester S C, Dumais S T, Landauer T K, et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 1990.
  • 4Hofmann T. Probabilistic latent semantic indexing//Proceedings of the 22nd Annual International SIGIR Conference. New York: ACM Press, 1999:50-57.
  • 5Blei D, Ng A, Jordan M. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 6Griffiths T L, Steyvers M. Finding scientific topics//Proceedings of the National Academy of Sciences, 2004, 101: 5228 5235.
  • 7Steyvers M, Gritfiths T. Probabilistic topic models. Latent Semantic Analysis= A Road to Meaning. Laurence Erlbaum, 2006.
  • 8Teh Y W, Jordan M I, Beal M J, Blei D M. Hierarchical dirichlet processes. Technical Report 653. UC Berkeley Statistics, 2004.
  • 9Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, B39(1): 1-38.
  • 10Bishop C M. Pattern Recognition and Machine Learning. New York, USA: Springer, 2006.

共引文献350

同被引文献56

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部