摘要
人岗匹配度的合理测算是人才合理分配的基础,针对传统人岗匹配研究中主观评价占比高、数据表示粗糙等问题,对人岗匹配度测算方法进行了研究。首先构建了人岗匹配度指标体系;其次进行特征构建得到特征字段属性,采用数据表示和特征修正的技术方法进行特征表示、多区间划分及修正,完成各指标匹配度的测算;最后采用XGBoost算法构造人岗匹配度分类模型,将模型概率值作为匹配度测算值,通过真实招聘数据对该方法的有效性进行了验证。
The reasonable estimation of resume-post matching degree is the basis of rational allocation of talents.Aiming at the problems of high proportion of subjective evaluation and rough data representation in the traditional resume-post matching research,the estimation method of resume-post matching degree is studied.Firstly,the index system of resume-post matching degree is constructed.Secondly,the feature field attributes are obtained by feature construction;the technical methods of data representation and feature modification are used for feature representation,division,modification,and the calculation of the matching degree of each index.Finally,the XGBoost algorithm is used to construct a classification model of resume-post matching degree and the model probability value is used as the matching degree estimation value.The effectiveness of the method is verified by real recruitment data.
作者
常兵
褚志海
印忠文
赵龙军
Chang Bing;Zhu Zhihai;Yin Zhongwen;Zhao Longjun(CETC big data Research Institute Co.,Ltd,Guiyang,Guizhou 550022,China;China xiongan Group Co.,Ltd)
出处
《计算机时代》
2022年第4期9-12,共4页
Computer Era
基金
河北省重点研发计划项目“‘廉洁雄安’智能监督关键技术研究及应用示范”(20310106D)。
关键词
指标体系
数据表示
特征修正
人岗匹配度
index system
data representation
feature modification
resume-post matching degree