期刊文献+

利用细胞膜片技术构建新型前列腺癌皮下移植瘤动物模型

Developing a new animal model of subcutaneous transplanted prostate cancer with cell sheet technology
下载PDF
导出
摘要 背景与目的:传统前列腺癌皮下移植瘤模型的建立采取细胞悬液注射方式,但该方式存在较大局限性。探索利用细胞膜片技术构建新型前列腺癌皮下移植瘤动物模型的可行性。方法:将人前列腺癌细胞系DU145接种至35 mm温度敏感性细胞培养皿中,连续培养制备前列腺癌细胞膜片,并采用H-E染色和免疫组织化学方法鉴定。根据研究目的,设置细胞悬液组和细胞膜片组,细胞悬液组在BALB/c裸小鼠皮下注射DU145细胞悬液,细胞膜片组在裸小鼠皮下注射DU145细胞膜片。移植后4周处死裸小鼠,剥离两组移植瘤作进一步组织学分析,包括胶原纤维含量、局部浸润及血管生成情况。同时,解剖前列腺癌常见的转移脏器,如骨、肺和肝脏等,评估两组的全身转移情况。结果:培养1周后可制备前列腺癌DU145细胞膜片,大体观察呈现半透明胶质薄片,具备较好的组织学强度。组织学染色见膜片状结构,平均厚度约为(32.6±7.5)μm。DU145细胞标志物vimentin高表达,E-cadherin低表达,胶原纤维含量丰富,在膜片中高表达。皮下移植4周后,H-E染色显示,细胞膜片组肿瘤结构致密,有明显周围肌肉浸润,而细胞悬液组肿瘤存在较多空泡,与周围组织边界清楚。皮下移植4周后,细胞膜片组移植瘤体积明显大于细胞悬液组,两组测量肿瘤体积分别为(0.967±0.129)和(0.437±0.054)cm^(3)(t=3.774,P=0.0195)。马松染色显示,细胞膜片组蓝色胶原纤维含量明显高于细胞悬液组,两组吸光度(D)值分别为0.0230±0.0011和0.0140±0.0007(t=7.022,P=0.0001)。CD31免疫组织化学染色表明,在200倍显微镜视野下细胞膜片组和细胞悬液组移植瘤组织中微血管密度分别为53.20±3.56和32.40±4.98(t=3.392,P=0.0095)。皮下移植4周后,两组通过大体解剖和H-E染色均未见到明显的全身转移病灶。结论:利用细胞膜片技术构建前列腺癌皮下移植瘤动物模型具备可行性和一定优势,与传统细胞悬液注射方式相比,成瘤体积更大,与周围组织浸润程度更深,新生微血管密度更高,胶原含量丰富,更有助于揭示前列腺癌真实的生物学特征,有望应用于前列腺癌分子遗传学研究、肿瘤耐药机制及新药研发等领域。 Background and purpose:Traditional preparation of subcutaneous transplanted tumor of prostate cancer relies on cell suspension injection.However,there are great limitations.The purpose of this study was to explore the feasibility of developing a new animal model of subcutaneous transplanted prostate cancer with cell sheet technology.Methods:Human prostate cancer DU145 cells were inoculated into a 35 mm temperature sensitive cell culture dish,and the prostate cancer cell sheet was prepared by continuous culture and identified by H-E staining and immunohistochemistry.According to the research purpose,cell suspension group and cell membrane group were set up.DU145 cell suspension was subcutaneously injected into nude mice in cell suspension group,and DU145 cell sheet was subcutaneously injected into BALB/c nude mice in cell sheet group.The BALB/c nude mice were sacrificed 4 weeks after transplantation,and the grafted tumors in both groups were dissected for further histological analysis,including collagen fiber content,local infiltration and angiogenesis.Meanwhile,the common organs of prostate cancer metastasis,such as bone,lung and liver,were dissected to evaluate the systemic metastasis in both groups.Results:DU145 prostate cancer cell sheet could be prepared at 1 week after continuous culture.Histological staining revealed a membrane structure with an average thickness of(32.6±7.5)μm.The DU145 cell sheet was rich in collagen fibrin with high vimentin expression and low E-cadherin expression.H-E staining showed that the tumor structure was dense with obvious infiltration of surrounding muscles in the cell sheet group,while the tumor had more vacuoles and a clear boundary with surrounding tissues in the cell suspension group 4 weeks after subcutaneous transplantation.Moreover,the transplanted tumor volume was significantly higher in the cell sheet group than in the cell suspension group,and the measured tumor volume in the two groups were(0.967±0.129)and(0.437±0.054)cm^(3)(t=3.774,P=0.0195),respectively.Masson staining showed that the content of blue collagen fiber was significantly higher in the cell sheet group than in the cell suspension group,and the optical densities(D)value of the two groups were 0.0230±0.0011 and 0.0140±0.0007(t=7.022,P=0.0001),respectively.Immunohistochemical staining of CD31 showed that the microvascular density per×200 field in the cell sheet group and the cell suspension group were 53.20±3.56 and 32.40±4.98(t=3.392,P=0.0095),respectively.Gross anatomy and H-E staining showed no obvious systemic metastasis in the two groups 4 weeks after subcutaneous transplantation.Conclusion:It is feasible and advantageous to develop the animal model of subcutaneous transplanted prostate cancer using cell sheet technology.Compared with traditional cell suspension injection method,the tumor volum was larger,the infiltration degree was deeper with surrounding tissues,the density of new microvessels was higher,and the collagen content was richer,which is more helpful to reveal the real biological characteristics of prostate cancer.It is expected to be applied in the research of molecular genetics of prostate cancer,drug resistance mechanism and drug discovery.
作者 周术奎 张东亮 王翔 刘磊 李曾 杨盛柯 廖洪 ZHOU Shukui;ZHANG Dongliang;WANG Xiang;LIU Lei;LI Zeng;YANG Shengke;LIAO Hong(Department of Urology,Sichuan Cancer Hospital&Institute,Sichuan Cancer Center,School of Medicine,University of Electronic Science and Technology of China,Chengdu 610041,Sichuan Province,China;Department of Urology,Shanghai General Hospital,Shanghai Jiao Tong University,Shanghai 200080,China)
出处 《中国癌症杂志》 CAS CSCD 北大核心 2022年第3期200-206,共7页 China Oncology
基金 四川省卫生和计划生育委员会重点研究项目(19ZD015)。
关键词 细胞膜片技术 前列腺癌模型 异位移植 肿瘤微环境 Cell sheet technology Prostate cancer model Ectopic implantation Tumor microenvironment
  • 相关文献

参考文献1

二级参考文献8

  • 1马春光,叶定伟,李长岭,周芳坚,姚旭东,张世林,戴波,张海梁,朱耀,沈益君.前列腺癌的流行病学特征及晚期一线内分泌治疗分析[J].中华外科杂志,2008,46(12):921-925. 被引量:124
  • 2韩苏军,张思维,陈万青,李长岭.中国前列腺癌发病现状和流行趋势分析[J].临床肿瘤学杂志,2013,18(4):330-334. 被引量:769
  • 3郑荣寿,孙可欣,张思维,曾红梅,邹小农,陈茹,顾秀瑛,魏文强,赫捷.2015年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2019,41(1):19-28. 被引量:3384
  • 4叶定伟,朱耀.中国前列腺癌的流行病学概述和启示[J].中华外科杂志,2015,0(4):249-252. 被引量:270
  • 5顾成元,秦晓健,黄永墙,朱耀,戴波,叶定伟.我国部分省市前列腺癌精准筛查初步结果分析[J].中华医学杂志,2019,99(42):3292-3297. 被引量:45
  • 6李冬冬,郭威,郭轶斌,林振,吴骋,王越.居住地距最近医疗机构的距离对居民就医行为的影响[J].中国卫生统计,2020,37(2):269-271. 被引量:15
  • 7H.Agakishiev,M.M.Aggarwal,Z.Ahammed,A.V.Alakhverdyants,I.Alekseev,J.Alford,B.D.Anderson,C.D.Anson,D.Arkhipkin,G.S.Averichev,J.Balewski,D.R.Beavis,N.K.Behera,R.Bellwied,M.J.Betancourt,R.R.Betts,A.Bhasin,A.K.Bhat,H.Bichsel,J.Bieleik,J.Bielcikova,B.Biritz,L.C.Bland,W.Borowski,J.Bouchet,E.Braidot,A.V.Brandin,A.Bridgeman,S.G.Brovko,E.Bruna,S.Bueltmann,I.Bunzarov,T.P.Burton,X.Z.Cai,H.Caines,M.Calderon de la Barca Sanchez,D.Cebra,R.Cendejas,M.C.Cervantes,Z.Chajecki,P.Chaloupka,S.Chattopadhyay,H.F.Chen,J.H.Chen,J.Y.Chen,L.Chen,J.Cheng,M.Cherney,A.Chikanian,K.E.Choi,W.Christie,P.Chung,M.J.M.Codrington,R.Corliss,J.G.Cramer,H.J.Crawford,S.Dash,A.Davila Leyva,L.C.De Silvat,R.R.Debbe,T.G.Dedovich,A.A.Derevschikov,R.Derradi de Souza,L.Didenko,P.Djawotho,S.M.Dogra,X.Dong,J.L.Drachenberg,J.E.Draper,J.C.Dunlop,L.G Efimov,M.Elnim,J.Engelage,G Eppley,M.Estienne,L.Eun,O.Evdokimov,R.Fatemi,J.Fedorisin,A.Feng,R.G.Fersch,P.Filip,E.Finch,V.Fine,Y.Fisyak,C.A.Gagliardi,D.R.Gangadharan,A.Geromitsos,F.Geurts,P.Ghosh,Y.N.Gorbunov,A.Gordon,O.Grebenyuk,D.Grosnick,S.M.Guertin,A.Gupta,W.Guryn,B.Haag,O.Hajkova,A.Hamed,L-X.Han,J.W.Harris,J.P.Hays-Wehle,M.Heinz,S.Heppelmann,A.Hirsch,E.Hjort,G.W.Hoffmann,D.J.Hofiman,B.Huang,H.Z.Huang,T.J.Humanic,L.Huo,G.Igo,P.Jacobs,W.W.Jacobs,C.Jena,F.Jin,J.Joseph,E.G.Judd,S.Kabana,K.Kang,J.Kapitan,K.Kauder,H.Ke,D.Keane,A.Kechechyan,D.Kettler,D.P.Kikola,J.Kiryluk,A.Kisiel,V.Kizka,A.G.Knospe,D.D.Koetke,T.Kollegger,J.Konzer,I.Koralt,L.Koroleva,W.Korsch,L.Kotchenda,V.Kouchpil,P.Kravtsov,K.Krueger,M.Krus,L.Kumar,P.Kurnadi,M.A.C.Lamont,J.M.Landgraf,S.LaPointe,J.Lauret,A.Lebedev,R.Lednicky,J.H.Lee,W.Leight,M.J.LeVine,C.Lil,L.Li,N.Li,W.Li,X.Li,X.Li,Y.Li,Z.M.Li,M.A.Lisa,F.Liu,H.Liu,J.Liu,T.Ljubicic,W.J.Llope,R.S.Longacre,W.A.Love,Y.Lu,E.V.Lukashov,X.Luo,G.L.Ma,Y.G.Mai,D.P.Mahapatra,R.Majka,O.I.Mall,L.K.Mangotra,R.Manweiler,S.Margetis,C.Markert,H.Masui,H.S.Matis,Yu.A.Matulenko,D.MeDonald,T.S.McShane,A.Meschanin,R.Milner,N.G.Minaev,S.Mioduszewski,A.Mischke,M.K.Mitrovski,B.Mohanty,M.M.Mondal,B.Morozov,D.A.Morozov,M.G.Munhoz,M.Naglis,B.K.Nandi,T.K.Nayak,P.K.Netrakanti,L.V.Nogach,S.B.Nurushev,G.Odyniec,A.Ogawa,Oh,Ohlson,V.Okorokov,E.W.Oldag,D.Olsont,M.Pachr,B.S.Page,S.K.Pal,Y.Pandit,Y.Panebratsev,T.Pawlak,H.Pei,T.Peitzmann,C.Perkins,W.Peryt,S.C.Phatak,P.Pile,M.Planinic,M.A.Ploskon,J.Pluta,D.Plyku,N.Poljak,A.M.Poskanzer,B.V.K.S.Potukuchi,C.B.Powell,D.Prindle,N.K.Pruthi,A.M.Poskanzer,B.V.K.S.Potukuchi,B.Powell,D.Prindle,N.K.Pruthi,P.R.Pujahar,J.Putschke,H.Qiu,R.Raniwala,S.Raniwala,R.L.Ray,R.Redwine,R.Reed,H.G.Riter,J.B.Roberts,O.V.Rogachevskiy,J.L.Romero,A.Rose,L.Ruan,J.Rusnak,N.R.Sahoo,S.Sakai,I.Sakrejda,T.Sakuma,S.Salur,J.Sandweiss,E.Sangaline,A.Sarkar,J.Schambach,R.P.Scharenberg,A.M.Schmah,N.Schmitz,T.R.Schuster,J.Seele,J.Seger,I.Selyuzhenkov,P.Seyboth,E.Shahaliev,M.Shao,M.Sharma,S.S.Shi,Q.Y.Shou,E.P.Sichtermann,F.Simon,R.N.Singaraju,M.J.Skoby,N.Smirnov,H.M.Spinka,B.Srivastava,T.D.S.Stanislaus,D.Staszak,S.G.Steadman,J.R.Stevens,R.Stock,M.Strikhanov,B.Stringfellow,A.A.P.Suaide,M.C.Suarez,N.L.Subba,M.Sumbera,X.M.Sun,Y.Sun,Z.Sun,B.Surrow,D.N.Svirida,T.J.M.Symons,A.Szanto de Toledo,J.Takahashi,A.H.Tang,Z.Tang,L.H.Tarini,T.Tarnowsky,D.Thein,J.H.Thomas,J.Tian,A.R.Timmins,D.Tlusty,M.Tokarev,V.N.Tram,S.Trentalange,R.E.Tribble,Tribedy,O.D.Tsai,T.Ullrich,D.G.Underwood,G.Van Buren,G.van Nieuwenhuizen,J.A.Vanfossen,R.Varma,G.M.S.Vasconcelos,A.N.Vasiliev,F.Videbaek,Y.P.Viyogi,S.Vokal,M.Wadat,M.Walker,F.Wang,G.Wang,H.Wang,J.S.Wang,Q.Wang,X.L.Wang,Y.Wang,G.Webb,J.C.Webb,G.D.Westfall,C.Whitten,H.Wieman,S.W.Wissink,R.Witt,W.Witzke,Y.F.Wu,Xiao,W.Xie,H.Xu,N.Xu,Q.H.Xu,W.Xu,Y.Xu,Z.Xu,L.Xue,Y.Yang,P.Yepes,K.Yip,I-K.Yoo,M.Zawisza,H.Zbroszczyk,W.Zhan,J.B.Zhang,S.Zhang,W.M.Zhang,X.P.Zhang,Y.Zhang,Z.P.Zhang,J.Zhao,C.Zhong,W.Zhou,X.Zhu,Y.H.Zhu,R.Zoulkarneev,Y.Zoulkarneeva.Measurements of dihadron correlations relative to the event plane in Au+Au collisions at√^(S)NN=200 GeV[J].Chinese Physics C,2021,45(4):198-241. 被引量:351
  • 8梁静,赵晓智,时静妍,邱雪峰,张青,庄君龙,汪维,邓永明,黄海锋,张成伟,郭宏骞.南京地区前列腺癌筛查“PSA-mpMRI-靶向穿刺”模式的初步探索[J].中华男科学杂志,2019,25(9):815-822. 被引量:13

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部