期刊文献+

基于机器学习建模的XSS攻击防范检测

XSS Attack Prevention and Detection Based on Machine Learning Modeling
下载PDF
导出
摘要 为了解决网络流量中跨站脚本攻击频发且攻击危害性高的问题,研究了基于机器学习算法建模的跨站脚本检测技术,从复杂的网络流量数据中发掘跨网站脚本(Cross-Site Scripting,XSS)攻击,然后结合专家经验和安全业务知识对数据进行打标学习,并采用机器学习技术训练算法模型,实现了对XSS攻击的自动化和智能检测功能。测试表明,在安全领域引入机器学习算法,能够准确识别复杂多变、高危恶意的XSS攻击,提高了安全设备对威胁攻击的检测能力。 In order to solve the problem of frequent cross-site script attacks and high harmfulness in network traffic, this paper studies the cross-site script detection technology that based on machine learning modeling,explores XSS(Cross-site scripting) attacks from complex network traffic data, then combines with expert experience and security business knowledge to mark and learn the data, and uses machine learning to train algorithm model to realize automatic and intelligent detection of XSS attacks. Experiments indicate that in the field of security, machine learning is introduced to accurately identify complex, changeable and highrisk malicious XSS attacks, which improves the ability of security devices to detect threat attacks.
作者 温嵩杰 罗鹏宇 胥小波 范晓波 WEN Songjie;LUO Pengyu;XU Xiaobo;FAN Xiaobo(China Electronics Technology Cyber Security Co.,Ltd.,Chengdu Sichuan 610041,China;No.30 Institute of CETC,Chengdu Sichuan 610041,China)
出处 《通信技术》 2022年第3期351-358,共8页 Communications Technology
基金 国家关键信息基础设施防御项目(MWA21Y004)。
关键词 跨站脚本攻击 机器学习 安全算法 代码注入 cross-site scripting attack machine learning security algorithm code injection
  • 相关文献

参考文献9

二级参考文献22

  • 1CERT. CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests [ EB/OL]. http:/! www. cert. org/advisories/CA-2000-02, htm1,2000-02-03.
  • 2Xu W, Bhatkar S, Sekar R. Taint-enhanced policy enforce- ment : A practical approach to defeat a wide range of attacks [ C ]//Proceedings of the 15th Conference on USENIX Se- curity Symposium. 2006,15 : 121-136.
  • 3Nanda S, Lam L C, Chiueh T. Dynamic muhiprocess infor- mation flow tracking for Web application security [ C ]/! Proceedings of the 8th ACM/IFIP/USENIX International Conference on Middleware. 2007.
  • 4Nguyen-Tuong A, Guarnieri S, Greene D, et al. Automatical- ly hardening Web applications using precise tainting[ C ]/! Proceedings of the 20th IFIP International Information Se- curity Conference. 2005:295-305.
  • 5Pietraszek T, Berghe C V. Defending against injection at- tacks through context-sensitive string evaluation [ C ]//Pro- ceedings of the Sth International Symposium on Recent Ad- vances in Intrusion Detection. 2005 : 124-145.
  • 6Bisht P, Venkatakrishnan V N. XSS-GUARD: Precise dy- namic prevention of cross-site scripting attacks [ C ]//Pro- ceedings of the 5th International Conference on Detection ofIntrusions and Malware, and Vulnerability Assessment. 2008 : 23-43.
  • 7Vogt P, Nentwich F, Jovanovic N, E. Kirda, C. Kruegel, and G. Vigna. Cross-site scripting prevention with dynamic data tainting and static analysis [ C]//Proceedings of the Net- work and Distributed System Security Symposium(NDSS). San Diego,CA,USA,2007.
  • 8Jim T,Swamy N,Hicks M. Defeating script injection attacks with browser-enforced embedded policies [ C ]//Proceedings of the 16th International Conference on World Wide Web. 2007:601-610.
  • 9Van Gundy M, Chen H. Noncespaces: Using randomization to enforce information flow tracking and thwart cross-site scripting attacks[ C]//Proceedings of the 16th Annual Net- work and Distributed System Security Symposium(NDSS). San Diego, CA, USA, 2009:56-64.
  • 10Wichers D. The top 10 most critical web application security risk [R]. Belgium: The Open Web Application Security Project (OWASP), 2010.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部