期刊文献+

基于全卷积网络模型的高分遥感影像内陆网箱养殖区提取 被引量:3

Extracting inland cage aquacultural areas from high-resolution remote sensing images using fully convolutional networks model
下载PDF
导出
摘要 为了研究高分遥感影像的内陆网箱养殖区自动快速提取,利用福建省北部内陆水域的GF-1影像和GF-2影像,并对影像中的网箱养殖区进行人工标注,经过旋转、缩放和镜像翻转等数据增强处理后构建了2种影像的内陆网箱养殖区样本库;利用样本库训练内陆网箱养殖区提取的深度学习全卷积网络(fully convolutional networks,FCN)模型并开展精度验证。结果显示,GF-1影像提取结果的F值达到83.37%,GF-2影像提取结果的F值达到92.56%。表明基于FCN的高分影像内陆网箱养殖区提取具有较高的精度,能够进行大规模内陆网箱养殖区提取应用,为内陆水产养殖区的监测提供重要依据。 The extraction of cage aquacultural areas was investigated using high-resolution GF-1 and GF-2 remote sensing images from northern Fujian Province. Image enhancement was performed by correction, fusion, and cropping. The sample database of inland cage culture areas of two kinds of images was constructed;The sample bank is used to train the in-depth learning fully convolutional networks(FCN) model extracted from inland cage culture area and verify the accuracy. The results of the test experiment show that the F-measure of GF-1 and GF-2 reaches 83.37% and 92.56%,respectively. It shows that the inland cage culture area extraction based on FCN has high accuracy, and can be used for large-scale inland cage acquaculture area extraction, which provides an important basis for the monitoring of inland aquaculture area.
作者 李连伟 张源榆 岳增友 薛存金 付宇轩 徐洋峰 LI Lian-wei;ZHANG Yuan-yu;YUE Zeng-you;XUE Cun-jin;FU Yu-xuan;XU Yang-feng(College of Oceanography and Space Informatics,China University of Petroleum,Qingdao 266580,China;Natural resources and Planning Bureau of Weishan County,Jining 277600,China;Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China;Key Laboratory of Digital Earth Science,Chinese Academy of Sciences,Beijing 100094,China)
出处 《山东科学》 CAS 2022年第2期1-10,共10页 Shandong Science
基金 中国科学院战略性先导科技专项(A类)(XDA19060103)。
关键词 深度学习 全卷积网络模型 数据增强 高分辨率遥感影像 GF卫星 内陆网箱养殖区 养殖区提取 deep learning FCN model data enhancement high-resolution remote sensing image GF satellite inland cage aquacultural area aquacultural area extraction
  • 相关文献

参考文献5

二级参考文献62

共引文献330

同被引文献29

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部