期刊文献+

一种基于机器学习的商圈运营模式优化研究

Research on Optimization of business district operation mode based on machine learning
下载PDF
导出
摘要 目前商业运营还存在投入成本高但管理不够精细,店铺属性关联不明显等问题。基于此,文章利用机器学习中的聚类模型、关联规则模型解决了上述问题。特别是,利用PCA(principle component analysis,主成分分析)技术将高维数据降维,便于将高维数据的聚类结果进行可视化分析。实验结果验证了文章所提出的算法能够有效的将店铺根据其消费记录进行分类,以及能够利用关联规则将店铺进行兴趣关联和层次定位,运行结果证明该方法是正确和有效的。 At present,there are still some problems in commercial operation,such as high investment cost but not meticulous management,not obvious store attribute correlation and so on.Based on this,this paper uses the clustering model and association rule model in machine learning to solve the above problems.In particular,PCA(principal component analysis)technology is used to reduce the dimension of high-dimensional data,which is convenient for visual analysis of clustering results of highdimensional data.The experimental results show that the proposed algorithm can effectively classify stores according to their consumption records,and can use association rules to associate stores'interests and locate their levels.The running results show that the method is correct and effective.
作者 赵心夷 ZHAO Xin-yi(College of computer and Cyberspace Security,Hebei Normal University,Shijiazhuang 050000,China)
出处 《电脑与信息技术》 2022年第2期77-80,共4页 Computer and Information Technology
关键词 机器学习 聚类 降维 PCA 关联规则 machine Learning clustering dimensionality reduction PCA association rule analysis
  • 相关文献

参考文献5

二级参考文献103

  • 1宁宝林,陈海耿,杨泽宽,王英斌.加热炉控制数学模型[J].冶金能源,1989,8(5):37-40. 被引量:33
  • 2高宪文,赵亚平.模糊自适应PID在焦炉控制中的仿真[J].东北大学学报(自然科学版),2006,27(10):1067-1070. 被引量:16
  • 3陈龙,马伯渊,张雪峰.智能PID控制在电石炉电极调节系统中的应用[J].系统仿真学报,2007,19(7):1544-1547. 被引量:6
  • 4Labrinidis A, Jagadish H V. Challenges and Opportunities with Big Data. Proc of the VLDB Endowment, 2012, 5(12) : 2032-2033.
  • 5Bizer C, Boncz P, Brodie M L, et al. The Meaningful Use of Big Data : Four Perspectives-Four Challenges. ACM SIGMOD Record, 2012, 40(4) : 56-60.
  • 6Wang F Y. A Big-Data Perspective on AI: Newton, Merton, and An- alytics Intelligence. IEEE Intelligent Systems, 2012, 27 (5) : 2-4.
  • 7Simon H A. Why Should Machines Learn?//Michalski R S, Car- bonell J G, Mitchell T M, et al. , eds. Machine Learning: An Arti- ficial Intelligence Approach. Berlin, Germany: Springer, 1983: 25 -37.
  • 8Hart P. The Condensed Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1968, 14(3) : 515-516.
  • 9Gates G. The Reduced Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1972, 18(3) : 431-433.
  • 10Brighton H, Mellish C. Advances in Instance Selection for Instance- Based Learning Algorithms. Data Mining and Knowledge Discovery, 2002, 6(2) : 153-172.

共引文献339

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部