期刊文献+

水系锌离子电池金属负极的挑战与优化策略 被引量:7

Challenges and optimization strategies of the anode of aqueous zinc-ion battery
下载PDF
导出
摘要 水系锌离子电池(ZIBs)由于其安全性好,成本低和环境友好等特点,被认为是非常有潜力的储能系统,得到了广泛的研究。目前尽管在高性能正极材料的研究方面取得了快速进展,但关于锌负极的研究还有不足。为了解决锌负极的固有缺点,在提高锌负极性能和负极保护方面提出了很多策略。本文通过对相关文献的探讨,总结了库仑效率(CE)低和循环性能差是锌负极现阶段面临的挑战,进一步分析了这主要是由于锌负极枝晶生长和腐蚀现象引起。通过回顾近期锌负极自身设计和电解液优化改变锌负极界面特性的研究,分别从锌负极合金化处理,锌负极表面结构改造,锌负极界面保护,电解液锌盐对比,电解液添加剂,凝胶电解液共六个方面详细分析并对比了改善锌负极性能的具体方式。最后概括了锌离子电池的研究必要性,展望了未来稳定锌负极界面的策略。 Aqueous zinc ion batteries(ZIBs)are up-and-coming energy storage systems due to their safety,low cost,and environmental friendliness;hence have vast research potential.Despite rapid improvements in high-performance cathode materials,research on zinc anodes is still lacking.Many strategies focus on improving the zinc anode performance and anode protection to address the inherent shortcomings.In this review,the relevant literature suggests that low Coulomb efficiency(CE)and poor cycling performance are challenges for zinc anode at present,which are due to zinc anode dendrite growth and corrosion phenomena.In this paper,the methods to improve the performance of zinc anode are compared in detail on following aspects:zinc anode alloying treatment,surface structure modification,interfacial protection,electrolyte zinc salt comparison,electrolyte additives,and gel electrolyte,by reviewing recent research on zinc anode design and electrolyte optimization to change the interfacial properties of zinc anode.Finally,we outline the demand for ZIBs research and future strategies for stabilizing the zinc anode interface.
作者 王心怡 李维杰 韩朝 刘化鹍 窦世学 WANG Xinyi;LI Weijie;HAN Chao;LIU Huakun;DOU Shixue(Institute for Superconducting and Electronic Materials,AIIM Building,Innovation Campus,University of Wollongong,Wollongong,NSW 2522,Australia)
出处 《储能科学与技术》 CAS CSCD 北大核心 2022年第4期1211-1225,共15页 Energy Storage Science and Technology
基金 Discovery Early Career Researcher Award(DECRA,DE180101478)。
关键词 水系锌离子电池 枝晶 腐蚀 锌负极设计 电解液优化 aqueous zinc ion batteries dendrite corrosion zinc anode design electrolyte optimization
  • 相关文献

参考文献12

二级参考文献14

共引文献115

同被引文献27

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部